

Interactive Session on Methods of Hierarchical and Distributed MPC

Riccardo Scattolini

*Dipartimento di Elettronica e Informazione,
Politecnico di Milano*

Approaches

- Distributed optimization (Leuven)
- Game theory (Wisconsin)
- Robustness (Milano)
- ...

A simple example

$$S1: x_1(k+1) = A_{11}x_1(k) + A_{12}x_2(k) + B_{11}u_1(k) + B_{12}u_2(k)$$

$$S2: x_2(k+1) = A_{21}x_1(k) + A_{22}x_2(k) + B_{21}u_1(k) + B_{22}u_2(k)$$

$$x_1 \in X_1, x_2 \in X_2, u_1 \in U_1, u_2 \in U_2$$

polytopic sets containing the origin

MPC problem

$$\begin{aligned} \min_{u_1, u_2} J = \sum_{j=0}^{N-1} & [x_1'(k+j)Q_1x_1(k+j) + x_2'(k+j)Q_2x_2(k+j) + \\ & + u_1'(k+j)R_1u_1(k+j) + u_2'(k+j)R_2u_2(k+j)] + \\ & + x_1'(k+N)P_1x_1(k+N) + x_2'(k+N)P_2x_2(k+N) \end{aligned}$$

under the dynamic constraints, the previous state and control constraints, the terminal constraints

$$x_1(k+N) \in X_{f1}, \quad x_2(k+N) \in X_{f2}$$

and the additional “mixed” (linear) constraints

$$\begin{bmatrix} H_{x1} & H_{x2} & H_{u1} & H_{u2} \end{bmatrix} \begin{bmatrix} x_1(k+j) \\ x_2(k+j) \\ u_1(k+j) \\ u_2(k+j) \end{bmatrix} \leq c, \quad j = 0, \dots, N$$

Distributed optimization

The optimization problem

$$\begin{aligned} \min_{u_1, u_2} J &= \sum_{j=0}^{N-1} [x_1'(k+j)Q_1x_1(k+j) + u_1'(k+j)R_1u_1(k+j)] + x_1'(k+N)P_1x_1(k+N) + \\ &+ \sum_{j=0}^{N-1} [x_2'(k+j)Q_2x_2(k+j) + u_2'(k+j)R_2u_2(k+j)] + x_2'(k+N)P_2x_2(k+N) \\ &= J_1 + J_2 \end{aligned}$$

is equivalent to

$$\begin{aligned} \min_{u_1, u_2} J &= \chi_1'(k)\Delta_1\chi_1(k) + \chi_2'(k)\Delta_2\chi_2(k) \\ &= J_1(\chi_1) + J_2(\chi_2) \end{aligned}$$

$$\begin{aligned} \chi_1(k) &= \begin{bmatrix} x_1'(k) & u_1'(k) & \cdots & x_1'(k+N-1) & u_1'(k+N-1) & x_1'(k+N) \end{bmatrix} \\ \chi_2(k) &= \begin{bmatrix} x_2'(k) & u_2'(k) & \cdots & x_2'(k+N-1) & u_2'(k+N-1) & x_2'(k+N) \end{bmatrix} \end{aligned}$$

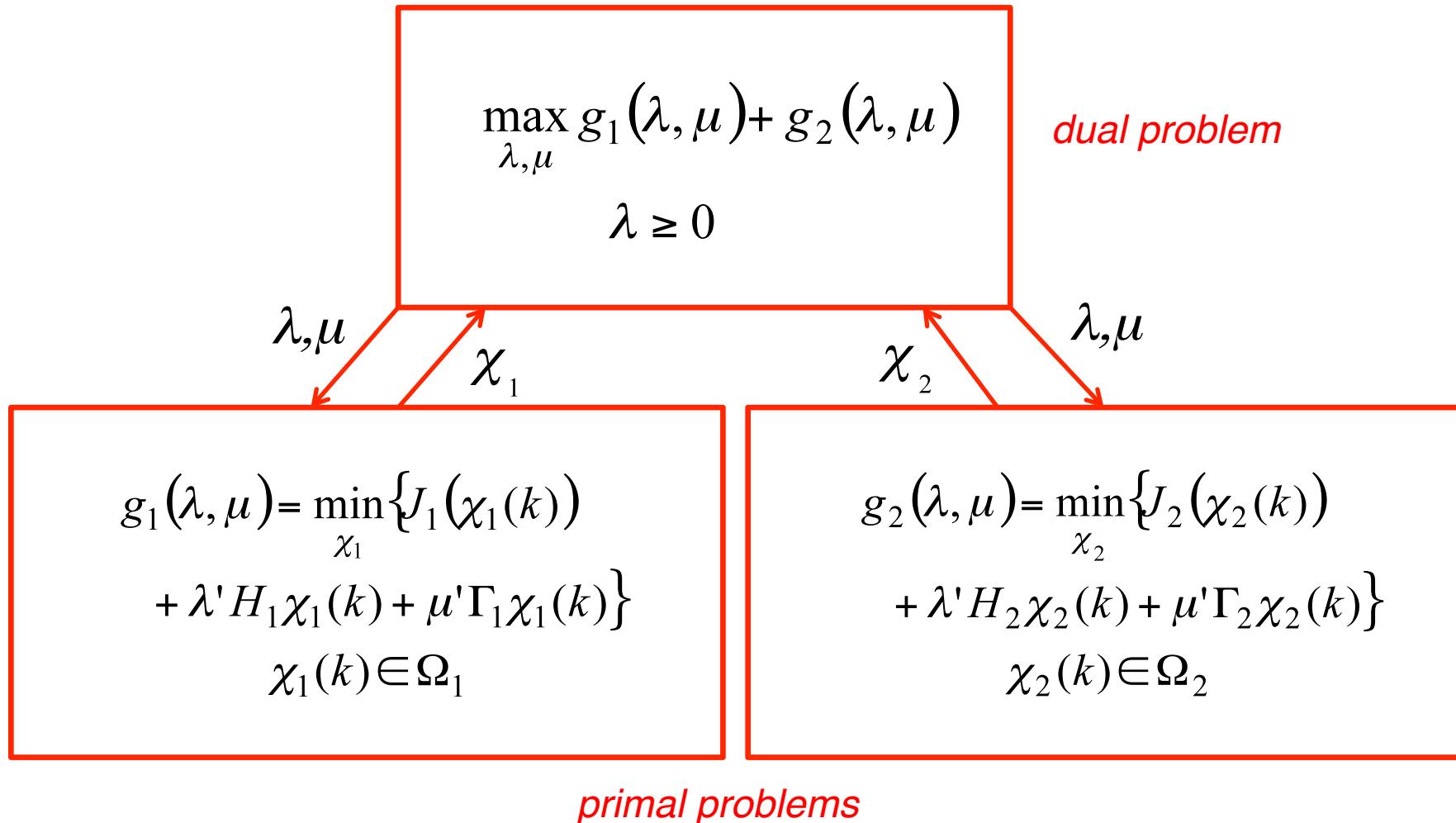
Distributed optimization

and

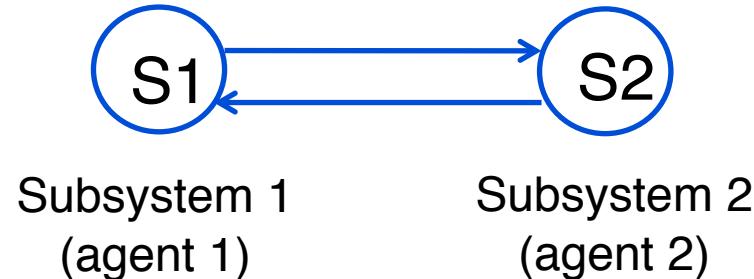
$$\min_{u_1, u_2} J = \dot{\chi}_1(k) \Delta_1 \chi_1(k) + \dot{\chi}_2(k) \Delta_2 \chi_2(k) = J_1(\chi_1(k)) + J_2(\chi_2(k))$$

$$\begin{bmatrix} H_1 & H_2 \end{bmatrix} \begin{bmatrix} \chi_1(k) \\ \chi_2(k) \end{bmatrix} \leq \bar{c}$$

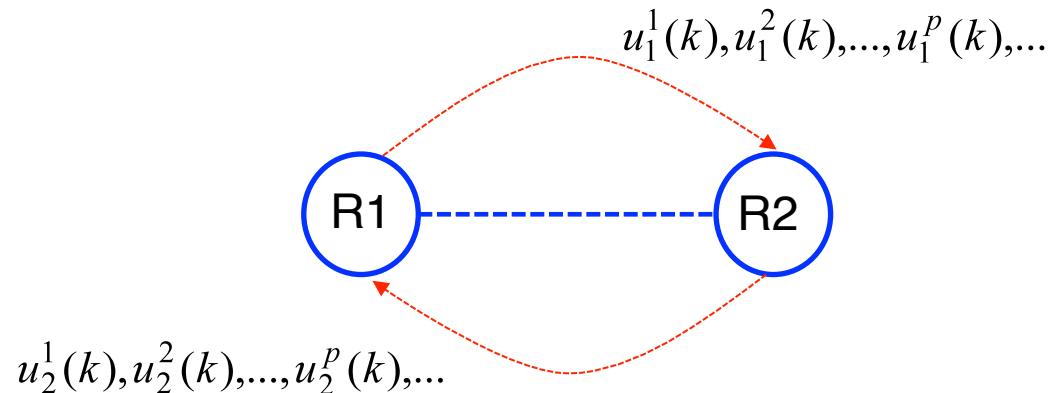
$$\begin{bmatrix} \Gamma_1 & \Gamma_2 \end{bmatrix} \begin{bmatrix} \chi_1(k) \\ \chi_2(k) \end{bmatrix} = 0$$

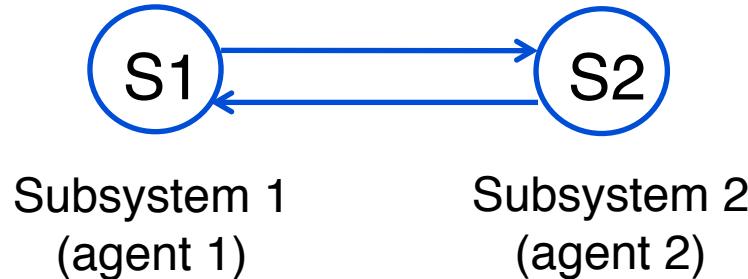

$$\chi_1(k) \in \Omega_1, \chi_2(k) \in \Omega_2$$

Both the performance index and the constraints are separable.
The Lagrangian is also separable

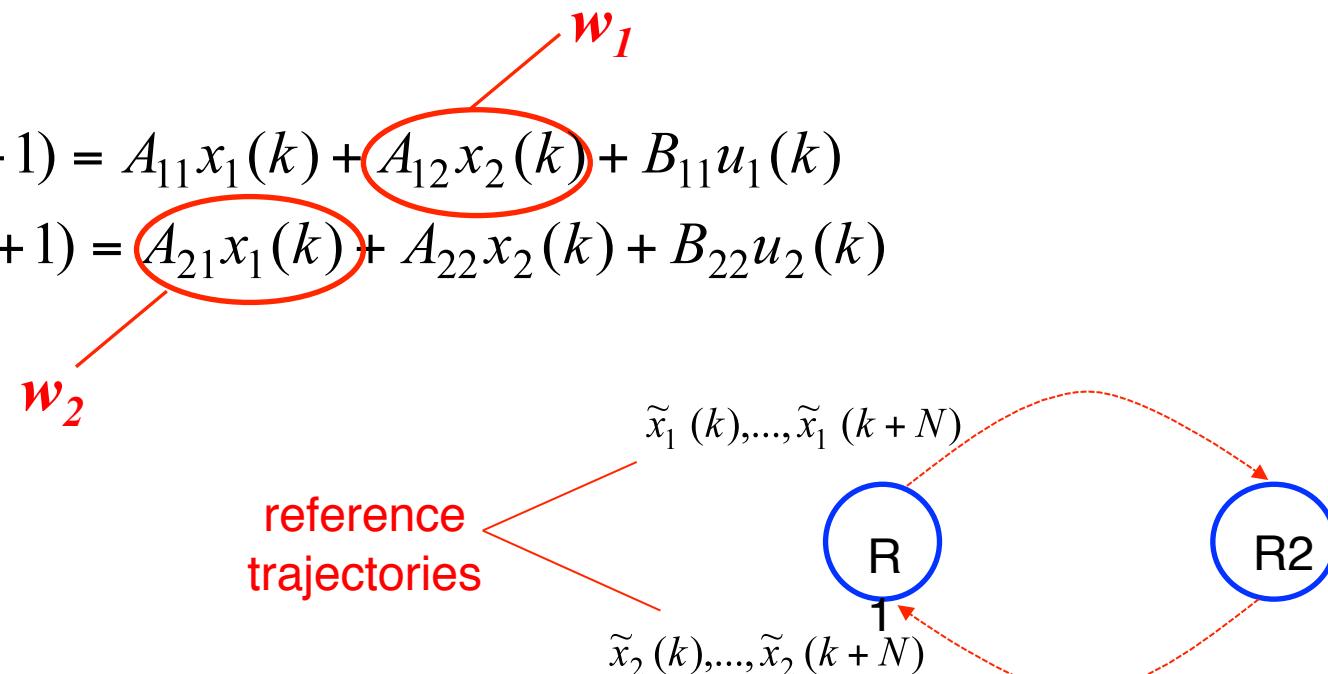

$$\begin{aligned} L = & \dot{\chi}_1(k) \Delta_1 \chi_1(k) + \dot{\chi}_2(k) \Delta_2 \chi_2(k) + \lambda'(H_1 \chi_1(k) + H_2 \chi_2(k) - \bar{c}) + \\ & + \mu'(\Gamma_1 \chi_1(k) + \Gamma_2 \chi_2(k)) \end{aligned}$$

Distributed optimization - 5


*Dual decomposition
an iterative procedure*


Game theory

the two agents play a game, which can be either cooperative or not (Pareto or Nash equilibria are searched for depending on the local or global objective of each agent, or player)


Robust MPC

the effect of the other subsystem is viewed as a disturbance to be rejected

$$S1: x_1(k+1) = A_{11}x_1(k) + A_{12}x_2(k) + B_{11}u_1(k)$$

$$S2: x_2(k+1) = A_{21}x_1(k) + A_{22}x_2(k) + B_{22}u_2(k)$$

Distributed control algorithms – *properties*

- *Fully connected*: all-to-all communication. Information is transmitted from any local regulator to all the others
- *Partially connected*: neighbor-to-neighbor communication. Information is transmitted among the local regulators of subsystems with a direct dynamic influence
- *Iterative*: multiple transmissions among local regulators within each sampling time
- *Non iterative*: only one iteration within the sampling time
- *Cooperating*: each local regulator minimizes a global cost function
- *Independent*: each local regulator minimizes a local cost function

Distributed MPC – developments and challenges

- “*Usual stuff*”: output feedback, tracking, nonlinear systems ...
- *Reconfigurability*: what happens when new subsystems are added/removed/substituted?
- *Adaptivity*: how to deal with changing operating conditions?
- *Networked control and asynchronous communication*: what is the effect of bandwidth limitation, delays, loss of information ...?
- *When distributed MPC*: is it really needed? Is it possible to quantify the loss of performance (also in economic terms)?
- *Software environments*: if SW is not available, distributed MPC will remain an academic game