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Irrigation Canal Scheme
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Control structures - Gates

Two Taintor Gates with side weirs




Canal elements




Canal Operation Concepts

« Supply oriented operation

— Upstream water supply source or inflow determines the
canal system flow schedule

— Used when the inflow Is fixed by a different
organization than the canal manager

 Demand oriented operation

— Downstream water demand (offtakes) determines the
canal system flow schedule

— The inflow is determined by the canal manager

accordingly with the demand Z




Control objectives

« Main objective: guarantee flows requested by users. It is necessary to
maintain the level of the canal over the off-take gate.
« Controlled Variables:
— levels upstream or downstream the gates.
— flows through gates, mainly at the head of the canal and secondary canals.
— Water volume

 Manipulated variables:
— Gate opening
— flow is considered as a manipulated variable to control levels when a two level
controller is used.
» Disturbances:
— Off-takes flows: measured, aggregate values or predicted
— Rainfall: Measured or predicted
« Contraints:
— Maximum and minimum levels along the canal

— Maximum and minimum flows
— Operating levels on reservoir at the tail of the canal




Control Concepts — Downstream Control
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(a) Downstream control concept

« Control structure adjustments (gates) are based upon information
from downstream (usually levels)

 Downstream control transfers the downstream offtake demand to the
upstream water supply source (flow at the head)

« Compatible with demand oriented operation

* Impossible with supply oriented operation ! E




Control Concepts — Upstream Control

« Control structure adjustments (gates) are based upon information
from upstream (usually levels)

« Upstream control transfers the upstream water supply (or inflow)
downstream to points of diversion or to the end of the canal

« Compatible with supply oriented operation

« Inefficient with demand oriented operation ! E




Irrigation Canal Control — General Ideas

 Controlled variables: Water level, water volume or
discharge (most common, level)

« Two global strategies:

— Directly manipulate gate opening in order to control
levels

— Two level control

- Compute required gate discharges in order to control water
levels (discharges as manipulated variable)

* Manipulate gate openings to obtain the requested gate
discharges

— Local Controller (Cascade control)

— Inverting the gate discharge equation E




Irrigation Canal Control — General Ideas
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Example of a two level downstream controller. The first level is
a predictive controller and the lower level controller is a PID




* [rrigation Canal System

 Models
— Saint-Venant equations
— Models of control structures
— Control models

« Control of Irrigation Canals




Irrigation Canal Model - Reaches
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Irrigation Canal Model - Reaches
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Saint_Venant Equations — Water Movement

V-C L A disturbance, created in a reach,
-— Ve results in two wave movements., one
e wave travels with velocity V+ ¢ and one
— travels with velocity V - c.
T
V oo | %A
\ B
B Top width of wetted cross section
A Wetted cross section surface

f

 Flow Regimes

— If c>V, subcritical flow, a change in flow results in two waves in opposite
directions

— If c=V, critical flow, a change in flow results in only one wave travelling
downstream

— If c<V, supercritical flow, a change in flow results in two waves travelling
downstream

« Subcritical flow is presented in most real irrigation canal




Saint_Venant Equations — Water Movement

Bode diagram of linearized De Saint Venant equations
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Structure Models — Overshot Gates

Many theoretical or empirical
formulas have been proposed, for
example:

Q = CdL1/§g (hl—hcr)%

L: Wih of gate

C, : Discharge coeficient




Structure Models — Undershot gates

gate free flow Q :Cd 'L'U /zghl
/E u: Gate opening
hydraulic

= \ jump kv
C =

-

. \__ - f{ﬁ 3
77 P 77 7 P
submerged

gate flow

subm.

v I hydraulic
N Jump

o —’C:;‘?

1|k

- 7 -

Q =C,-L-uy2g(h, —h,)




Simplified models for control

« Some approaches in bibliography

— Based on mathematical models
* Integrator-delay model (Shuurmans, TU Delft)

 Linearization of Saint-Venant equations (Litrico and Fromion,
Cemegraph)

— ldentification models
« Weyer et al. (University of Melbourne)
* Rivas Perez (Havana Polytechnic University)
* Rodellar, Sepulveda (Universidad Politécnica de Catalufia)

.




Simplified models for control — ID Model
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|dentification Models |

First and third
7\ order non-linear
and linear models
for a reach with
overshot gates

i
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Non-linear model
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Linear model

y2 (t +1) = y2 (t) + C1h1(t - T) + Cz(yz (t) - pz(t))

Parameters:c; ¢, t

E. Weyer. System identification
of an open water channel.
Control Engineering Practice 9,
2001




|dentification Models 11
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Conclusions:
Parameters: c; ¢, C; C,

Cs Cg @, Ay, T The models can be used for

accurate simulation of the water
levels at least 7.5 h ahead of time

E. Weyer. System identification
of an open water channel.
Control Engineering Practice 9,
2001

(2) The models are valid under
both high and low flow conditions




|dentification Models Il

Rivas Perez et al. System identification for control of a main irrigation canal pool.
Second order Model Proceedings of the 17th World Congress
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Sepulveda, Instrumentation, model identification and control of an experimental
irrigation canal. PhD Dissertation. Universidad Politécnica de Catalufia.




* [rrigation Canal System

 Models

» Control of Irrigation Canals
— Decentralized control
— Distributed control




Irrigation Canal Control — Common solutions

* Most of the Implemented techniques are based on
local PI

— EL-FLO: A PI controller with a filter applied to downstream
control.

— P+PR: A Pl applied to upstream control.

— BIVAL: The controlled variable used both upstream and
downstream measures (volume control)

y=ay, +0-a)Yun

— AVIS: P controller for radial gates (upstream control)
— AMIL:P controller for radial gates (downstream control)
— PIR: PI+ Smith predictor

Malaterre et al., "Classification of Canal Control
Algorithms", ASCE Journal of Irrigation and Drainage
Engineering. Jan./Feb. 1998, Vol. 124, .




Decentralized control

 The most used solution in practice consist of a Pl
compensator and a filter

— The compensator need at
least one pole in s=0to

achieve zero steady-state il | Pl ﬂU ]
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Decentralized Control: Decoupling and Feedforward

« Decoupling: Feedforward control considering the flow at the next
gate (u;,,) as a disturbance

— This flow is always measured (or computed) — no additional cost

— Diminish the interrelationship among coupled variables — reduction of
the amplification error problem

« Feedforward — offtake discharges
— Not always available a reliable measure.

u.(s)=C.(s)e.(s)+ F,(s)u, ,(s)+ F,(s)d.(s)
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MPC approaches

« Decentralized

“Predictive Control Applied to ASCE Canal 2”. K. Akouz et al. IEEE International
Conference on Systems, Man, and Cybernetics. (1998).

“Decentralized Predictive Controller for Delivery Canals”.S. Sawadogo et al. IEEE
International Conference on Systems, Man, and Cybernetics, volume 4.(1998).

“A Simulink-Based Scheme for Simulation of Irrigation Canal Control Systems”. J.
A. Mantecon et al.. SIMULATION (2002)

“Predictive control method for decentralized operation of irrigation canals”. M.
Gomez et al. Applied Mathematical Modelling 26 (2002)

« Centralized

“Multivariable predictive control of irrigation canals. Design and evaluation on a 2-
pool model”. P.O. Malaterre. International Workshop on the Regulation of Irrigation
Canals: State of the Art of Research and Applications (1997).

“Instrumentation, model identification and control of an experimental irrigation
canal’. C.A. Sepulveda. PhD. Thesis. (1997)

Model Predictive Control on Open Water Systems. P.J. Overloop. PhD. Thesis.
(2006)

“Predictive Control with constraints of a multi-pool irrigation canal prototype”. O.
Begovich. Latin American Applied Research, 37 (2007)

“Adaptive and non-adaptive model predictive control of an irrigation canal” J.M.
Lemos et al. Networks and heterogeneous media. Volume 4, Number 2, (2009).




Some comparative results

A three reaches canal:
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Why distributed Control?

Coordination between sub-systems is needed, i.e. the avoidance of
upstream disturbance amplification in canals consisting of canal
reaches in series

The number of reaches and gates can be high (near one hundred in
the Postrasvase Tajo-Segura): computational limitations for a
Centralized MPC

Different section of the canal can be managed by different Control
Centers and even by different organizations.

Precipitacién 01/07/05 D S‘ﬂ‘ W sﬂl




Why distributed Control?

Coordination between sub-systems is needed, i.e. the avoidance of
upstream disturbance amplification in canals consisting of canal
reaches in series

The number of reaches and gates can be high (near one hundred in
the Postrasvase Tajo-Segura): computational limitations for a
Centralized MPC

Different section of the canal can be managed by different Control
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Distributed approaches to Irrigation Canal

Decentralized predictive controller for delivery canals

S. Sawadogo, R. M. Faye, P. O. Malaterre and F. Mora-Camino.

Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (San
Diego, California), 1998

Optimal control of complex irrigation systems via decomposition -coordination and the use
of augmented Lagrangian

H. El Fawal, D. Georges and G. Bornard

Proceedings of the 1998 International Conference on Systems, Man, and Cybernetics (San Diego,
California), 1998.

Decentralized adaptive control for a water distribution system.
G. Georges.
Proceedings ofthe 3rd IEEE Conference on Control Applications (Glasgow, UK), 1999.

Cooperative Control of Water Volumes of Parallel Ponds Attached to An Open Channel Based
on Information Consensus with Minimum Diversion Water Loss.

Christophe Tricaud and YangQuan Chen

PLoceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin,
China, 2007,

Distributed controller design for open water channels
Y. Li and M. Cantoni,
Proceedings of the 17th IFAC World Congress, Korea, 2008.

Distributed Model Predictive Control of Irrigation Canals
R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter
NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, 2009.

Performance Analysis of Irrigation Channels with Distributed Control.
Yuping Li and Bart De Schutter.
2010 IEEE International Conference on Control Applications. Yokohama, Japan, 2010

A hierarchical distributed model predictive control approach to irrigation canals: A risk
mitigation perspective.

A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F.Camacho and L. Sanchez

Journal of Process Control - Special Issue on HD-MPC.2011




A serial distributed MPC

« Control strategy: Downstream control
— Controlled variable: Downstream level

— Manipulated variables: Flows at the gates (set-point provided to the local flow
controllers)

» Subsystems: A gate and the downstream reach

- Each controller requires the current state of its subsystem and predictions of
the values of interconnecting variables.

« The controllers perform several iterations consisting of local problem solving
and communication with neighbors.

 Serial communication scheme: One agent after another performs
computations

« Iterative method based on Lagrange Multipliers.

“‘DISTRIBUTED MODEL PREDICTIVE CONTROL OF IRRIGATION
CANALS”

R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter
NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, (2009)




A serial distributed MPC: Models

TC TC TC TC
ID Model: hi(k +1) = h;(k) + 7qin,i(k N kd,i) — o ,i(k) + 7qext,in,i(k) = e o ,i(k)

X.(k+1)=Ax. (k)+B,.u,(k)+B,.d.(k)+ B,,v.(k)
State-Space ! ' 1
Model: y. (k) = C.x (k)
[ h(k) ]
Qi (K =Ky i) rqext,in,i(k)—|
X (K) = d; (k)=
where | | qext,out i (k)
L qin,i(k _1) ]

u;(k) =a;,; (k) vi(k) =q,, (k) y(k)=nh(k) ﬂ

HD-MPC




A serial distributed MPC: Interconnecting variables

e | i e

L e e T g L T i
Wi, ; (k) = v; (k) K, is a interconnecting
w, (k)= K, [x[ (k) ul (k) y] (K] output selection matrix

) ) ] Win,ji(k) = Wout,ij(k)
and an |nterC0nneCt|ng constraint:
Wout ji (k) = Wi i (k)

Win’ji,downi(k) = qout,i(k)

Wout,ji'upi(k) = qin,i(k)
ji,down rindex of the downstream canal reach of reach i

ji,Up index of the upstream canal reach of reach i




A serial distributed MPC: Control algorithm

« The controllers solve their control problems in the
following serial iterative way:
— Set the iteration counter and initialize the Lagrange multipliers

arbitrarily.
One controller after another solves its optimization problem:

min ‘] local ,i + Z j ‘] iiie)r J (Win,ji (k)’ Wout , i ’ﬂ’))

Update the Lagrange Multipliers with the new values of the
interconnecting variables

Send and receive the multipliers from the neighbor agent

Move on to the next iteration until a stopping condition is
satisfied

* The controllers implement the actions until the beginning

of the next control cycle i




A serial distributed MPC: Control objective

* The deviations of water levels from provided set-points
are minimized

* The changes in the set-points provided to the local flow
controllers are minimized to reduce equipment wear

e i = Z p, (h(k+1+1)—h_ )’ +Z_ p, (U (k+D)—u (k+1+1))°

2
|n prev ,ij (k) out ji (k)

Vvout prev ,ij (k) Wm ji (k)

(k) —| I_Wln jl(k)—l }/C

- -
|L Ao i (K) | [ Wou, ,.(k)J 2

in, ji

mter i




A serial distributed MPC: Simulation Results

* 7 reaches canal

« The length of the canal is almost 10 km

« Maximum capacity of the head gate is 2.8m3/s

« Control cycle length: 240 s.

« Prediction horizon length; 31 (to take into account the total delay in the irrigation canal

« Scenario: a sudden increase of 0.1m3/s at control cycle k = 30 in the water offtake of
canal reach 3 and a sudden decrease of 0.1m3/s at control cycle k = 70 in the same

canal reach.
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A HD-MPC approach based on risk management

This approach shows how risk management can be applied to optimize the

Irrigation Canal operation in order to consider process uncertainties.

The proposed method, for the use of risk metrics, forecasts the water level of
reaches, benefits and costs associated to IC.

Formulation of a Hierarchical and Distributed MPC (HDMPC) to optimize the
strategic plan (mitigation actions) that optimizes the operation of the IC.

Higher Level: MPC with a risk-based strategy

Lower Level: DMPC to optimize the operation (based on the DMPC based on game

theory presented previously)

“A hierarchical distributed model predictive control approach to irrigation
canals: A risk mitigation perspective”

A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F.Camacho and L.
Sanchez

Journal of Process Control - Vol 21-5 - Special Issue on HD-MPC (June-
2011)




HD-MPC and Risk Management

[ General structure

External risk informatio
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Lower level: DMPC approach

E Downstream control, considering underflow gates and gate
position as manipulated variable

B Each subsystem corresponds with a reach

E The Integrator delay model has been used for the reach
movement and the flow through the gates as manipulated
variables

E Each agent has only partial information of the system. Agents
optimize according to a local cost function

E Low communicational requirements

B Cooperative solution: Cooperative algorithm from a game

theory point of view. The different agents must reach an
agreement on the value of the shared inputs




Lower level: DMPC approach

: T T T T
ID Model: hl(k + 1) = hl(k) + chin,i(k — kd,i) - chout ,i(k) + chext,in,i(k) o chext,out ,i(k)

State state model: (K +1) = Ax(k)+ 2 Byu;(k)+d;(k)

]

uy (k) = a, ; (k)
u, (k) = gy i (k)

where;

There is no coupling between the states of the agents (only coupled by the
actuations)

Each agent has local information about the state and knows how it is
affected by the different inputs

Inputs are not assigned to agents : i




| ower level: Cost functions

B Agents optimize according to alocal cost function

Jilxe, WU ) ka) (k) )

Ltk ) = 0% — i) Qulx — (@) + > _ul Sy

feny
E Control objective: Global Performance Index
My
> Ji(xi (1), {U;(t) }jen,)
1=1

B The different agents must reach an agreement on the value of the
shared inputs




Lower level: Algorithm

=

Each agent p measures its current state x(t)
Agents try to submit their proposals randomly. To this end, each agent asks the neighbors
affected if they are free to evaluate a proposal.
In order to generate its proposal, each agent p minimizes J, solving the following
optimization problem:
{Uﬁ?(t)}jEnp = arg min Ip(zp, {Uj}jen,)
Jrienp

s.t.

Tpk+1 = ApZpk + Ljen, Bpjtik

zp.0 = @i(1)

Tpk EXp, k=0,...N

u; i € Uy, k=0,..N—-1,Vjieny

Tp N € Qp

Each agent i affected by the proposal of agent p evaluates the predicted cost corresponding
to the proposed solution. To do that, the agent calculates the difference between the cost of
the new proposal and the cost of the current accepted proposal. The difference is sent back
to agent p.

Once agent p receives the local cost increments from each neighbor, it can evaluate the
impact of their proposal.

The algorithm returns to Step 1 until the maximum number of proposals has been made or
the sampling time ends.

The first input of each optimal sequence is applied and the procedure is repeated the next

sampling time from Step 1.




Lower level. Case study

Benchmark: postrasvase Tajo-Segura in the south-east of Spain

D e B Lower Level
oo Control water management in
LEYENDA DE PUNTOS DE TELECONTROL . .

& Futewts canals by satisfying demands

i e AAN Controlled variables:
6,680km downstream levels

Manipulated variables: flow at
R, the head and the position of the
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Case study: Lower level results

B Scenario: All reaches begin with a water level of 3.0 m and there is a change of set
points for all the reaches to 3.40m (from higher level, day 150)
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