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Electrical power distribution
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MPC at the large scale

Decentralized Control

Most large-scale systems consist of networks of
interconnected/interacting subsystems

I Chemical plants, electrical power grids, water distribution networks, . . .

Traditional approach: Decentralized control
I Wealth of literature from the early 1970’s on improved decentralized

control a

I Well known that poor performance may result if the interconnections
are not negligible

a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)
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MPC at the large scale

Centralized Control

Steady increase in available computing power has provided the
opportunity for centralized control

Coordinated control: Distributed optimization to achieve fast solution
of centralized control (Necoara et al., 2008; Cheng et al., 2007)

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers
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Nomenclature: consider two interacting units

Objective functions V1(u1, u2), V2(u1, u2)

and V (u1, u2) = w1V1(u1, u2) + w2V2(u1, u2)

decision variables for units u1 ∈ Ω1, u2 ∈ Ω2

Decentralized Control min
u1∈Ω1

Ṽ1(u1) min
u2∈Ω2

Ṽ2(u2)

Noncooperative Control min
u1∈Ω1

V1(u1, u2) min
u2∈Ω2

V2(u1, u2)

(Nash equilibrium)

Cooperative Control min
u1∈Ω1

V (u1, u2) min
u2∈Ω2

V (u1, u2)

(Pareto optimal)

Centralized Control min
u1,u2∈Ω1×Ω2

V (u1, u2)

(Pareto optimal)
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Noninteracting systems
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Moderately interacting systems
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Geometry of cooperative vs. noncooperative MPC
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Plantwide suboptimal MPC
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Early termination of optimization gives suboptimal plantwide feedback

Use suboptimal MPC theory to prove stability
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Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory(
x+

u+

)
=

(
Ax + Bu
g(x ,u)

)
Function g(·) returns suboptimal choice

Stability of augmented system is established by Lyapunov function

a |(x ,u)|2 ≤ V (x ,u) ≤ b |(x ,u)|2

V (x+,u+)− V (x ,u) ≤ −c |(x , u)|2

Adding constraint establishes closed-loop stability of the origin for all
u1

|u| ≤ d |x | x ∈ Br , r > 0

Cooperative optimization satisfies these properties for plantwide
objective function V (x ,u)

1(Rawlings and Mayne, 2009, pp.418-420)
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Modeling

Plantwide step response

u1

y1

u2

y2

Interaction models found by decentralized identification2

y2 x+
21 = A21x21 + B21u1

x+
11 = A11x11 + B11u1y1

u1

2Gudi and Rawlings (2006)
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Modeling

Consider the linearized physical model

x+ = Ax + B1u1 + B2u2 y1 = C1x , y2 = C2x

Kalman canonical form of the triple (A,Bj ,Ci )


zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij


+

=


Aoc
ij 0 Aocc̄

ij 0
Aōoc
ij Aōc

ij Aōcoc̄
ij Aōcc̄

ij

0 0 Aoc̄
ij 0

0 0 Aōc̄o
ij Aōc̄

ij




zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij

+


Boc
ij

B ōc
ij

0
0

 uj

yij =
[
C oc
ij 0 C oc̄

ij 0
] 

zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij

 yi =
∑
j

yij

Interaction models

Aij ← Aoc
ij Bij ← Boc

ij Cij ← C oc
ij xij ← zoc

ij
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Unstable modes

For unstable systems, we zero the unstable modes with terminal
constraints.

For subsystem 1

Su
11
′x11(N) = 0 Su

21
′x21(N) = 0

To ensure terminal constraint feasibility for all x , we require (A1,B1)
stabilizable

A1 =

[
A11

A21

]
B1 =

[
B11

B21

]
For output feedback, we require (A1,C1) detectable

A1 =

[
A11

A12

]
C1 =

[
C11 C12

]
Similar requirements for other subsystem
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Output feedback

Consider augmented system perturbed by stable estimatorx̂+

u+

e+

 =

Ax̂ + Bu + Le
g(x̂ ,u, e)

ALe


Stable estimator error implies Lyapunov function

ā |e| ≤J(e) ≤ b̄ |e|
J(e+)−J(e) ≤ −c̄ |e|

Stability of perturbed system established by Lyapunov function

W (x̂ ,u, e) = V (x̂ ,u) + J(e)
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Two reactors with separation and recycle

F0, xA0

Q

Fpurge

D, xAd, xBd

Hr Hm

B→ C
A→ BA→ B

B→ C

Hb

F1, xA1

Fm, xAm, xBm

Fb, xAb, xBb,T

Fr, xAr, xBr

MPC3

MPC1 MPC2
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Two reactors with separation and recycle
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Two reactors with separation and recycle

Performance comparison

Cost (×10−2) Performance loss

Centralized MPC 1.75 0
Decentralized MPC ∞ ∞
Noncooperative MPC ∞ ∞
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%
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Traditional hierarchical MPC

Coordinator

MPCMPC MPC

1s 1s5s 3s 0.5s

Setpoints

2min1min

1hr

Data

Plantwide coordinator

Coordinator

MPC MPC

Multiple dynamical time scales in plant

Data and setpoints are exchanged on chosen scale

Optimization performed at each layer
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Cooperative MPC data exchange

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storageData storage

Read

Write

5s

MPC MPC

All data exchanged plantwide

Data exchange at each controller execution

Rawlings Distributed MPC 21 / 56



Cooperative hierarchical MPC

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storage

1min

Read

Write
2min

1hr

Plantwide data storage

Data storage

MPC MPC

Optimization at MPC layer only

Only subset of data exchanged plantwide

Data exchanged at chosen time scale
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Motivating the hierarchical optimization
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Hierarchical optimization

3

4

2

N3

N1 1

I1:4

Consider the optimization

min
u

V (u1, u2, u3, u4)

We group the variables into two neighborhoods

N1 = {1, 2} and N2 = {3, 4}
We solve the optimization in a distributed fashion

suboptimizations utilize the latest iterate only from variables in their
neighborhood
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Hierarchical optimization

Suboptimizations
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ῡ2
1

V (u1, u2, u
0
3 , u

0
4)

u4

u3

u0

V (u0
1 , u

0
2 , u3, u4)

ῡ2
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Hierarchical optimization

Overall
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Two reactors with separation and recycle

Performance comparison

Cost Performance loss

Centralized 0.95 -
Cooperative (1 iterate) 1.60 68%
Ns = 1 1.633 71%
Ns = 2 1.646 73%
Ns = 5 1.661 75%
Ns = 10 1.669 76%
Ns = 25 1.670 76%
Ns = 50 1.670 76%
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Reducing communication

Nu
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We define a leader in each neighborhood and a graph between the leaders
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Reducing communication

We define the state propagation in the following way

xi (k) =Āk
iixi (0) +

k−1∑
τ=0

∑
j∈Ni

Āk−τ−1
ii B̄ijuj(τ)

+
k−1∑
τ=0

∑
l∈L

∑
s∈I1:M\l

Ā
[k−τ−1]
is Āslαl(τ)

such that

α+
i = Āiiαi +

∑
j∈Ni

B̄ijuj

α is defined only for the leaders

Computation requires only information from within the neighborhood
and from other leaders
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Nonlinear Distributed MPC

We assume the model is of the form
dx1

dt
= f1(x1, x2, u1, u2)

y1 = C1x1

dx2

dt
= f2(x1, x2, u1, u2)

y2 = C2x2

Given these physical system models of the subsystems, the overall plant
model is

dx

dt
= f (x , u)

y = Cx

in which

x =

[
x1

x2

]
u =

[
u1

u2

]
f =

[
f1

f2

]
y =

[
y1

y2

]
C =

[
C1

C2

]
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Nonconvexity
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Figure: Cost contours for a two-player, nonconvex game; cost increases for the
convex combination of the two players’ optimal points.
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Requirements for distributed, nonlinear control

Must handle nonconvex objectives

Two criteria in design:
1 the optimizers should not rely on a central coordinator
2 the exchange of information between the subsystems and the iteration

of the subsystem optimizations should be able to terminate before
convergence without compromising closed-loop properties.
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Distributed nonconvex optimization

Consider the optimization

min
u

V (u) s.t. u ∈ U

We require approximate solutions to the following suboptimizations at
iterate p ≥ 0 for all i ∈ I1:M

up
i = arg min

ui∈Ui

V (ui , u
p
−i )

in which u−i = (u1, . . . , ui−1, ui+1, . . . , uM).

Define the step υpi = up
i − up

i .
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Algorithm

To choose the stepsize αp
i , each suboptimizer initializes the stepsize3

with αi

V (up)− V (up
i + αp

i υ
p
i , u

p
−i ) ≥ −σα

p
i ∇iV (up)′υpi

in which σ ∈ (0, 1).

After all suboptimizers finish the backtracking process, they exchange
steps. Each suboptimizer forms a candidate step

up+1
i = up

i + wiα
p
i υ

p
i ∀i ∈ I1:M

3Armijo rule: (Bertsekas, 1999, p.230)
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Algorithm

Check the following inequality, which tests if V (up) is convex-like

V (up+1) ≤
∑
i∈I1:M

wiV (up
i + αp

i υ
p
i , u

p
−i ) (1)

in which
∑

i∈I1:M
wi = 1 and wi > 0 for all i ∈ I1:M .

If the condition above is not satisfied, then we find the direction with
the worst cost improvement

imax = arg max
i
{V (up

i + αp
i υ

p
i , u

p
−i )}

and eliminate this direction by setting wimax to zero and repartitioning
the remaining wi so that they sum to 1.

At worst, condition (1) is satisfied with one direction only.
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Distributed nonconvex optimization — Properties

Lemma (Feasibility)

Given a feasible initial condition, the iterates up are feasible for all p ≥ 0.

Lemma (Objective decrease)

The objective function decreases at every iterate, that is,
V (up+1) ≤ V (up).

Lemma (Convergence)

Every accumulation point of the sequence {up} is stationary.
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Distributed nonconvex optimization
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Figure: Nonconvex function optimized with Distributed nonconvex optimization
algorithm
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A nonlinear example

Consider the unstable nonlinear system

x+
1 = x2

1 + x2 + u3
1 + u2

x+
2 = x1 + x2

2 + u1 + u3
2

with initial condition (x1, x2) = (3,−3).

For this example, we use the stage cost

`1(x1, u1) =
1

2
(x ′1Q1x1 + u′1R1u1)

`2(x2, u2) =
1

2
(x ′2Q2x2 + u′2R2u2)

For the simulation we choose the parameters

Q = I R = I N = 2 p = 3 Ui = [−2.5, 2.5] ∀i ∈ I1:2
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Distributed nonlinear cooperative control
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Distributed nonlinear cooperative control
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Distributed nonlinear cooperative control
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Figure: Open-loop cost to go versus time on the closed-loop trajectory for
different numbers of iterations.
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Distributed nonlinear cooperative control
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Why study robustness of suboptimal MPC?

Cooperative, distributed MPC is a special case of suboptimal MPC.
Anything we establish about suboptimal MPC can be applied to
cooperative, distributed MPC (and optimal MPC!)

Suboptimal MPC has an interesting feature: a nonunique,
point-to-set control law u ∈ κN(x).

Optimal solution of nonconvex

PN(x) : min
u∈UN

VN(x ,u)

cannot be computed online for any nonlinear model. Practitioners
implement only suboptimal MPC.

We should know something about its inherent robustness properties.4

4Pannocchia et al. (2011)
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For suboptimal MPC; again, the basic MPC setup

The system model
x+ = f (x , u) (2)

State and input constraints

x(k) ∈ X , u(k) ∈ U for all k ∈ I≥0

Terminal constraint (and penalty)

φ(N; x ,u) ∈ Xf ⊆ X
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Cost function and control problem

For any state x ∈ Rn and input sequence u ∈ UN , we define

VN(x ,u) =
N−1∑
k=0

`(φ(k ; x ,u), u(k)) + Vf (φ(N; x ,u))

`(x , u) is the stage cost; Vf (x(N)) is the terminal cost

Consider the finite horizon optimal control problem

PN(x) : min
u∈UN

VN(x ,u)
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Suboptimal MPC

Rather then solving PN(x) exactly, we consider using any
(unspecified) suboptimal algorithm having the following properties.

Let u ∈ UN(x) denote the (suboptimal) control sequence for the
initial state x , and let ũ denote a warm start for the successor initial
state x+ = f (x , u(0; x)), obtained from (x ,u) by

ũ := {u(1; x), u(2; x), . . . , u(N − 1; x), u+} (3)

u+ ∈ U is any input that satisfies the invariance condition in the
terminal region
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Suboptimal MPC

The warm start satisfies ũ ∈ UN(x+).

The suboptimal input sequence for any given x+ ∈ XN is defined as
any u+ ∈ UN that satisfies:

u+ ∈ UN(x+) (4a)

VN(x+,u+) ≤ VN(x+, ũ) (4b)

VN(x+,u+) ≤ Vf (x+) when x+ ∈ rB (4c)

in which r is a positive scalar sufficiently small that rB ⊆ Xf .

Notice that constraint (4c) is required to hold only if x+ ∈ rB, and it
implies that |u+| → 0 as |x+| → 0.

Condition (4b) ensures that the computed suboptimal cost is no
larger than that of the warm start.
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Inherent robustness of the suboptimal controller

Consider a process disturbance d , x+ = f (x , κ(x)) + d

A measurement disturbance xm = x + e

Nominal controller with disturbance

x+ ∈ f (x , κN(xm)) + d

x+ ∈ f (x , κN(x + e)) + d

x+ ∈ Fed(x) (5)

Robust stability; is the system x+ ∈ Fed(x) input-to-state stable
considering (d , e) as the input.
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Robust exponential stability of suboptimal MPC

Definition (SRES)

The origin of the closed-loop system (5) is strongly robustly exponentially
stable (SRES) on a compact set C ⊂ XN , 0 ∈ int(C), if there exist scalars
b > 0 and 0 < λ < 1 such that the following property holds: Given any
ε > 0, there exists δ > 0 such that for all sequences {d(k)} and {e(k)}
satisfying

|d(k)| ≤ δ and |e(k)| ≤ δ for all k ∈ I≥0,

and all x ∈ C, we have that

xm(k) = x(k) + e(k) ∈ XN , x(k) ∈ XN , for all k ∈ I≥0, (6a)

|φed(k; x)| ≤ bλk |x |+ ε, for all k ∈ I≥0. (6b)
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Behavior with and without disturbances

x0

Nominal System

x+ = f (x , u)

u = κN(x)

x0

System with Disturbance

x+ = f (x , u) + d

u = κN(x + e)

d is the process disturbance
e is the measurement disturbance
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Main results

Theorem (SRES of suboptimal MPC (Pannocchia et al., 2011))

Under standard MPC assumptions, the origin of the perturbed closed-loop
system

x+ ∈ Fed(x)

is SRES on Cρ.

This result applies also to distributed, cooperative MPC.
See also Pannocchia talk on Wednesday, 14:30, WEB07.4.
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Conclusions

Cooperative MPC theory maturinga

aStewart et al. (2010); Maestre et al. (2011)

Avoids coordination layer

Satisfies hard input constraints

Provides nominal stability for plants with even strongly interacting
subsystems

Retains closed-loop stability for early iteration termination

Converges with iteration to Pareto optimal (centralized) control

Remains stable under perturbations
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Future directions

Lots to do!

Applications in which players compete as well as cooperate

Framework(s) for decomposing large-scale systems

Modeling versus performance tradeoffs poorly understood

Unstable systems and coupled constraints difficult to handle (supply
chain)

Distributed state estimation has received less attention than control
(Farina et al., 2010a,b)

Applications exposing limitations of current approaches (De Schutter
and Scattolini, 2011; Tarau et al., 2011; Baskar et al., 2011)
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