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Chemical plant integration

Material flow

Energy flow
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MPC at the large scale

Decentralized Control
@ Most large-scale systems consist of networks of
interconnected /interacting subsystems
Chemical plants, electrical power grids, water distribution networks, ...
o Traditional approach: Decentralized control

Wealth of literature from the early 1970's on improved decentralized
control @

Well known that poor performance may result if the interconnections
are not negligible

?(Sandell Jr. et al., 1978; Siljak, 1991; Lunze, 1992)
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MPC at the large scale

Centralized Control

@ Steady increase in available computing power has provided the
opportunity for centralized control

@ Coordinated control: Distributed optimization to achieve fast solution
of centralized control (Necoara et al., 2008; Cheng et al., 2007)

@ Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

@ A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

o Centralized control: A benchmark for comparing and assessing
distributed controllers
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Nomenclature: consider two interacting units

Objective functions
and

decision variables for units

Vi(ur, u2), Vo(ur, up)
V(u1, up) = wi Vi(ug, up) + wa Vo(uy, up)

u € Ql, up € Qz

Decentralized Control

in V, in V-
i 1(u1) i 2(u2)

Noncooperative Control

(Nash equilibrium)

in V. in V.
iy 1(u1, u2) ol >(u1, U2)

Cooperative Control

(Pareto optimal)

min V(u1,u2)  min V(u, up)
u €N U2 €€

Centralized Control

(Pareto optimal)

min Vv uy, up
uy,u€Q1 X ( ’ )
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Noninteracting systems
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Moderately interacting systems
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Geometry of cooperative vs. noncooperative MPC
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Plantwide suboptimal MPC
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-10 A

-10 -5 0 5 10

uy

o Early termination of optimization gives suboptimal plantwide feedback
@ Use suboptimal MPC theory to prove stability
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Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory

(x*) B <AX + Bu>

ut )\ g(x,u)

e Function g(+) returns suboptimal choice

@ Stability of augmented system is established by Lyapunov function
al(x;u)* < V(x,u) < b|(x,u)?
V(xtut) = V(x,u) < —c|(x, u)|?

@ Adding constraint establishes closed-loop stability of the origin for all

u1

luf <d|x|] xe€B,r>0

@ Cooperative optimization satisfies these properties for plantwide
objective function V/(x, u)

!(Rawlings and Mayne, 2009, pp.418-420)
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Modeling

Plantwide step response

U1J_

—k

nill

up

Y2 —_

e Interaction models found by decentralized identification?

—

UlJ

—/—

+

»n » X1 = Auxin + Buuw
+ _

%) Xp1 = Anixo1 + Born

2Gudi and Rawlings (2006)

Distributed MPC 13 / 56




Modeling

Consider the linearized physical model

xT = Ax 4 Byuy + Boup yi=Cx, y»= Gx

e Kalman canonical form of the triple (A, B;, C;)

+ -
ocC oc occ oc oc
zj A0 AR 0 ] Tz B
oc oocC ocC ococ occ ocC ocC
el Azoc A2 AijoE A AL
2 0 0 AF 0 ||zF 0
ocC oco ocC ocC
2 0 0 A A% |z 0
ocC
Zjj
_ Z0¢
_ oc oc i S .
yi=[Cj" 0 G 0] | % Yi= Y Yi
i :
Lz j
ocC
Zij

@ Interaction models

ocC ocC

ocC ocC
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Unstable modes

For unstable systems, we zero the unstable modes with terminal
constraints.

@ For subsystem 1
51u1,X11(N) =0 52ul,X21(N) =0

@ To ensure terminal constraint feasibility for all x, we require (A;,B;)

stabilizable
A1l B11
A — B =

e For output feedback, we require (A1, C;) detectable

A
Al = [ 1 A12} G=[C1 G2

@ Similar requirements for other subsystem
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Output feedback

Consider augmented system perturbed by stable estimator

' A%+ Bu + Le
ut | = g(X,u,e)
et ALe

@ Stable estimator error implies Lyapunov function

ale| <J(e) < ble]
< -

J(e")—J(e)

@ Stability of perturbed system established by Lyapunov function

c|ef

W(%,u,e) = V(k,u)+ J(e)
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Two reactors with separation and recycle
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Two reactors with separation and recycle
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Two reactors with separation and recycle

Performance comparison

Cost (x1072) Performance loss
Centralized MPC 1.75 0
Decentralized MPC 00 00
Noncooperative MPC o0 o0
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%
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Traditional hierarchical MPC

Plantwide coordinator

Setpoints
1hr

Coordinator Coordinator
1min 2min
Data
1s 5s 3s 1s

R——1K

@ Multiple dynamical time scales in plant
@ Data and setpoints are exchanged on chosen scale

@ Optimization performed at each layer

Distributed MPC
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Cooperative MPC data exchange

Read

Data storage

Write

@&

o All data exchanged plantwide

@ Data exchange at each controller execution
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Cooperative hierarchical MPC

Plantwide data storage

Data storage

Write

@ Optimization at MPC layer only
@ Only subset of data exchanged plantwide

@ Data exchanged at chosen time scale

Distributed MPC ) 5



Motivating the hierarchical optimization

uzL V(uy. up)

@ Any point in the triangle decreases the cost of V
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Hierarchical optimization

Consider the optimization
min V(u1, uo, u3, ug)

We group the variables into two neighborhoods
o N; ={1,2} and N, = {3,4}
We solve the optimization in a distributed fashion

@ suboptimizations utilize the latest iterate only from variables in their
neighborhood
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Hierarchical optimization

Suboptimizations

up
Uy

V(uy, ug, 13, ud)
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Hierarchical optimization

Overall
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Two reactors with separation and recycle

Performance comparison

Cost  Performance loss

Centralized 0.95 -

Cooperative (1 iterate) | 1.60 68%
N, =1 1.633 71%
Ns =2 1.646 73%
Ns=5 1.661 75%
Ns =10 1.669 76%
Ns = 25 1.670 76%
Ns =50 1.670 76%
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Reducing communication

We define a leader in each neighborhood and a graph between the leaders
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Reducing communication

We define the state propagation in the following way

k—1
xi(k) =Afxi(0) + > Y AT Bjui(r)

T7=0j€N;

k—1
+ZZ Z /Z\E-:fT*l]/Z\S/a/(T)

7=0 /€elL SEHLM\/

such that

+ 7 -
o; = A,‘,'Oz,' + E B,'J'UJ'
JEN;

@ « is defined only for the leaders

@ Computation requires only information from within the neighborhood
and from other leaders
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Nonlinear Distributed MPC

We assume the model is of the form

dxq
P fi(x1, xo, U1, Up)

y1=Cx
dX2
—
dt 2(X1,X2,U1,U2)
y2 = Goxo

Given these physical system models of the subsystems, the overall plant
model is

d
d—);:f(x,u)
y = Cx

in which

ot I A £ B B e
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Nonconvexity

uy

Figure: Cost contours for a two-player, nonconvex game; cost increases for the
convex combination of the two players' optimal points.
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Requirements for distributed, nonlinear control

@ Must handle nonconvex objectives
@ Two criteria in design:

@ the optimizers should not rely on a central coordinator

@ the exchange of information between the subsystems and the iteration
of the subsystem optimizations should be able to terminate before
convergence without compromising closed-loop properties.
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Distributed nonconvex optimization

o Consider the optimization

minV(u) st. vel

u

@ We require approximate solutions to the following suboptimizations at
iterate p > 0 for all / € 1.y

7p o . ) p
u? = arg min V(u;, u”))
u;€U;

in which u_; = (ul, ceey Ui, Ui 1y, UM).

o Define the step v = ! — u?.
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Algorithm

p

@ To choose the stepsize ], each suboptimizer initializes the stepsize3

with @;
V(uP) = V(uf +afuP uP)) > —oalf ViV (uP) uP
in which o € (0,1).
o After all suboptimizers finish the backtracking process, they exchange
steps. Each suboptimizer forms a candidate step
IPH = u,P +wiafv? Vieliy

u [

3Armijo rule: (Bertsekas, 1999, p.230)
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Algorithm

@ Check the following inequality, which tests if V/(uP) is convex-like

V(0P) < 3 wiV(uf + afel,uP) (1)

i
i€ly:m

in which Zieﬂw w; =1 and w; > 0 for all 7 € ..

@ If the condition above is not satisfied, then we find the direction with
the worst cost improvement

i

imax = arg m_ax{ V(ulp + apU,Pv uﬁ,‘)}
i

and eliminate this direction by setting w;__. to zero and repartitioning
the remaining w; so that they sum to 1.

e At worst, condition (1) is satisfied with one direction only.
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Distributed nonconvex optimization — Properties

Lemma (Feasibility)

Given a feasible initial condition, the iterates uP are feasible for all p > Q.

v

Lemma (Objective decrease)

The objective function decreases at every iterate, that is,
V(uPtl) < V(uP).

Lemma (Convergence)

Every accumulation point of the sequence {uP} is stationary.
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Distributed nonconvex optimization

up

Figure: Nonconvex function optimized with Distributed nonconvex optimization
algorithm
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A nonlinear example

@ Consider the unstable nonlinear system
x1+:x12+x2—|—uf+uz
x2+:x1+x22—|—u1—i—u§’

with initial condition (x1,x2) = (3, —3).

@ For this example, we use the stage cost

1
l1(x1, ur) ZE(X{Q1X1 + Ui Ryu)

1
l2(x2, u2) ZE(X§Q2X2 + upRoup)
@ For the simulation we choose the parameters

Q=/ R=1 N=2 p=3 U;=[-25,25 Vi€l
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Distributed nonlinear cooperative control
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Distributed nonlinear cooperative control

Figure: Input trajectory (p = 3)

Figure: Centralized input trajectory
(5 = 10)
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Distributed nonlinear cooperative control

10% |

-10 | ‘ ‘ ‘ ‘
10 0 2 4 6 8 10

Figure: Open-loop cost to go versus time on the closed-loop trajectory for
different numbers of iterations.
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Distributed nonlinear cooperative control

Figure: Contours of V with N =1 for k = 0 with (x1(0), x2(0)) =

Iterations of the subsystem controllers with initial condition (u
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Why study robustness of suboptimal MPC?

o Cooperative, distributed MPC is a special case of suboptimal MPC.
Anything we establish about suboptimal MPC can be applied to
cooperative, distributed MPC (and optimal MPC!)

@ Suboptimal MPC has an interesting feature: a nonunique,
point-to-set control law u € kp(x).
@ Optimal solution of nonconvex

Pun(x) : u”elllxgv Vi(x, u)

cannot be computed online for any nonlinear model. Practitioners

implement only suboptimal MPC.

@ We should know something about its inherent robustness properties.*

*Pannocchia et al. (2011)
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For suboptimal MPC; again, the basic MPC setup

@ The system model
xT = f(x, v) (2)

@ State and input constraints
x(k) e X, u(k)eU for all k € I>g
e Terminal constraint (and penalty)

d(N;x,u) e Xf CX
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Cost function and control problem

o For any state x € R” and input sequence u € UV, we define

=2

-1

Vin(x,u) = > U(d(k; x, u), u(k)) + Vi(o(N; x, u))
0

x
Il

@ /(x,u) is the stage cost; V¢(x(N)) is the terminal cost

@ Consider the finite horizon optimal control problem

Pun(x) : urr&zv Vi(x, u)

Distributed MPC B 15



Suboptimal MPC

@ Rather then solving Py(x) exactly, we consider using any
(unspecified) suboptimal algorithm having the following properties.

o Let u € Up(x) denote the (suboptimal) control sequence for the
initial state x, and let it denote a warm start for the successor initial
state x™ = f(x, u(0; x)), obtained from (x,u) by

0= {u(l;x),u(2;x),...,u(N—1;x),us } (3)

o uy € U is any input that satisfies the invariance condition in the
terminal region
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Suboptimal MPC

@ The warm start satisfies @i € Un(xT).

@ The suboptimal input sequence for any given x™ € Xy is defined as
any ut € UN that satisfies:

ut € UN(X+) (4a)
Vn(xTut) < Vy(xT, i) (4b)
Vn(xtut) < Ve(xh) when x* € rB (4c)

in which r is a positive scalar sufficiently small that rB C X¢.
o Notice that constraint (4c) is required to hold only if x™ € rB, and it
implies that [u™| — 0 as |x™| — 0.

e Condition (4b) ensures that the computed suboptimal cost is no
larger than that of the warm start.
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Inherent robustness of the suboptimal controller

e Consider a process disturbance d, x™ = f(x, k(x)) + d
@ A measurement disturbance x,, = x + e

@ Nominal controller with disturbance

xT e f(x, kn(xm)) +d
xT e f(x,kn(x+e)) +d
xt e Fed(x) (5)

Robust stability; is the system x™ € Foy(x) input-to-state stable
considering (d, e) as the input.
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Robust exponential stability of suboptimal MPC

Definition (SRES)

The origin of the closed-loop system (5) is strongly robustly exponentially
stable (SRES) on a compact set C C Xy, 0 € int(C), if there exist scalars
b >0 and 0 < A < 1 such that the following property holds: Given any
€ > 0, there exists 6 > 0 such that for all sequences {d(k)} and {e(k)}
satisfying

|d(k)| <0 and |e(k)| < d for all k € I,

and all x € C, we have that

xm(k) = x(k) + e(k) € Xy, x(k) € Xn, for all k € I>o, (6a)
|ped(k; x)| < bAK|x| + ¢, forall k € 9.  (6b)

v
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Behavior with and without disturbances

Nominal System System with Disturbance
xT = f(x, v) xT =f(x,u) +d
u = rky(x) u=rn(x+e)

d is the process disturbance
e is the measurement disturbance |
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Main results

Theorem (SRES of suboptimal MPC (Pannocchia et al., 2011))

Under standard MPC assumptions, the origin of the perturbed closed-loop
system

xT € Feq(x)

is SRES on C,.

This result applies also to distributed, cooperative MPC.
See also Pannocchia talk on Wednesday, 14:30, WEBOQ7.4.
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Conclusions

Cooperative MPC theory maturing?

“Stewart et al. (2010); Maestre et al. (2011)

Avoids coordination layer

Satisfies hard input constraints

Provides nominal stability for plants with even strongly interacting
subsystems

Retains closed-loop stability for early iteration termination

Converges with iteration to Pareto optimal (centralized) control

Remains stable under perturbations
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Future directions

Lots to do!
@ Applications in which players compete as well as cooperate
e Framework(s) for decomposing large-scale systems
@ Modeling versus performance tradeoffs poorly understood
°

Unstable systems and coupled constraints difficult to handle (supply
chain)

@ Distributed state estimation has received less attention than control
(Farina et al., 2010a,b)

@ Applications exposing limitations of current approaches (De Schutter
and Scattolini, 2011; Tarau et al., 2011; Baskar et al., 2011)
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