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Motivation and Background 

  Chemical & energy process plants 
•  large-scale, structured  
•  nonlinear, stiff 

  Process control and operations 
•  industrial state of the art  

  decentralized (PID) control  
& supervisory control 

  linear (centralized) MPC using step response or state space models 
from plant tests) 

•  (selected) research activities  
  nonlinear centralized MPC and RHE using first principles models 
  dynamic real-time optimization (DRTO) 
  hierarchical or/and decentralized optimal control (MPC, DRTO) and 

matching nonlinear data/model reconciliation & state estimation   
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Large-scale industrial process (Shell):!
•  How should decentralized control scheme 
  be designed for a range of operating 
  conditions and transitions in between? 
•  How fast can plant be moved from  
  operating point A to B? 
•  2 reactors, 3 distillation columns 
•  rigorous model including base layer control 
  system: 14.000 DAEs 
•  4 controls & 6 path constraints for transition,  
  long time horizon >> 24 hrs 

Industrial Case Study (1) 

Optimal transition control:!
•  complexity estimate (single shooting):  
  NLP with 100 Mio embedded DAEs  
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Industrial Case Study (2) 

Discretization of control 3 
•  Initial guess:        25 parameters   
•  Adaptive parameterization at final solution:    129 parameters 
•  Equivalent non-adaptive parameterization:  3072 parameters 
→  95% (or 41 million) equations eliminated by adaptive refinement! 

•  Calculation time per sensitivity integration:       ~ 7500 sec 
•  Total computation times (adaptive, serial):      > 1 month 
•  Total computation times (adaptive, parallel, 8 CPUs):  ~ 1 week    "

Optimal solution (offline) successful! !
 Savings of 50 k€ per transition!!

Is dynamic real-time optimization feasible?!

Computational results: adaptive discretization and parallelization 

(Hartwich, Marquardt, 2010) 
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Control of Process Plants (1) 

  Process plants can naturally be 
decomposed into subsystems Pi 
•  interconnecting variables: flows, 

i.e. rate, conc., temp., etc. 
•  local inputs: flow rates, etc.  
•  local outputs: measurements and 

interconnecting flows 
P1 

P2 

P3 P4 P5 

P1 P2 P3 P4 P5 

P 
u1 u2 u3 u4 u5 

y1 y2 y3 y4 y5 
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Control of Process Plants (2) 

  Centralized MPC (or DRTO) 
•  optimal and stable 
•  large-scale problem 

  Decentralized MPC  
(or DRTO) 
•  small-scale problems 
•  optimality and stability not 

guaranteed 

  Distributed MPC (or DRTO) 
•  small-scale problems 
•  optimality and stability can be 

guaranteed (if properly set-up) 
•  communication required 

P1 P2 P3 P4 P5 

P 
u1 u2 u3 u4 u5 

y1 y2 y3 y4 y5 

Controller C1 C2 C3 C4 C5 

(Scattolini, 2009) 
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Classic Approach – Dual Decomposition (1)   

  Consider the convex NLP 

  decomposed into subproblems, with primal problems 

  and dual problem 

 iterate to convergence (Lasdon, 1970) 
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Classic Approach – Dual Decomposition (2)          

  Primal problems 

•  cost functions and constraint functions are additive 
•  straight forward implementation 

  Dual problem 

•  main challenge for the solution in dual decomposition 
•  normally requires many iterations 

•  convergence can be proven under convexity assumptions 
(Lasdon, 1970) 
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  Consider a more 
general NLP: 

Sensitivity-Driven Decomposition (1)    

 (Scheu and Marquardt 2011a) 

neither constraints nor objective functions 
 of subsystems  

are additive! 
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  Consider a more 
general NLP: 

  Parallel iterative solution using decomposed subproblems 

ite
ra

tio
ns

 

Sensitivity-Driven Decomposition (2)    

 (Scheu and Marquardt 2011a) 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
11 

Why Might this Decomposition Work? 

  Let us look at the NCO for the (centralized) NLP 

  Proof of optimality requires comparison of the NCO for the 
centralized problem and the decomposed problem. 

Condition depends only on 
first order sensitivities 

Directly guaranteed by 
the subproblems 
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Theorem on Optimality 

  Assumptions on centralized NLP: 
•  cost functions Φi are strictly convex 
•  constraint functions ci are concave 

  Further assumptions 
•  p* solves the centralized NLP and satisfies LICQ 
•  distributed algorithm converges and its minimizer satisfies the LICQ 

  Then, the minimizer                      of the distributed problem and  
the minimizer     of the centralized problem are the same, i.e.   

 (Scheu and Marquardt 2011a) 
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Graphical Interpretation 

iterative approach overall problem: 
dotted: original problem 
solid: simplified problem 

linearization point 

initial guess 
optimal solution 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
14 

Linear Continuous-Time Systems (1) 

  Finite-horizon linear continuous-time optimal control problem: 

  Transcribe into QP 

(Scheu and Marquardt 2011a) 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
15 

Sketch of Transcription 

1.  Discretize the input variables 

2.  Solve the state variables x(k) for the input parameters p and the 
initial condition x0 in discrete time, i.e. 

3.  Transform continuous-time cost function into discrete cost 
function (Pannocchia et al. 2010) 

4.  Substitute x(k) in the discrete cost function 
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Linear Continuous-Time Systems (2) 

  Finite-horizon linear continuous-time optimal control problem: 

(Scheu and Marquardt 2011a) 

  Transcribe into QP 

  Apply sensitivity-driven decomposition and coordination: 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
17 

Convergence Analysis 

  Algorithm defines a fixed point iteration method, analysis based 
on the KKT NCO  

  Small-gain theorem can be applied, convergence for 

(Scheu and Marquardt 2011a) 
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Enforce Convergence              

  Distributed NLP 

ite
ra

tio
ns

 

  Further modification of the cost function 

    constant L does also depend on Ωi: 

  gradient-free optimization (Wegstein, 1958; Westerberg et al., 
1979) 

  generalization of proximal minimization algorithm (Rockafellar 
1976; Censor 1992) 
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Sensitivity-Driven Distributed MPC (S-DMPC) 

In closed loop, do on each horizon: 

1.  Measure or estimate the current system state. 
2.  Transcribe the optimal control problem into QP. 
3.  Select  

  initial parameters               and  
  initial Lagrange multipliers 
  Warm start based on preceding horizon. 

4.  Apply the distributed QP algorithm described before. 
5.  Apply the calculated optimal control inputs                                    

to the plant. 

coooperative, iterative, optimal on convergence,  
neighbor-to-neighbor communcation 
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Illustrative Example – Alkylation of Benzene 

(J. Liu et al. 2010) 
  subsystems 
  inputs 
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Sketch of Mathematical Model 

For each subsystem: 
  Mass balances for each species and energy balance 

For stirred tank reactors: 
  nonlinear reaction kinetics 
For flash separator: 
  nonlinear phase equilibrium and physical property models 

“Medium-scale” DAE system: 
•  25 differential equations 
•  ~100 algebraic equations 
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Sketch of Controller Design 

  Nonlinear process model 
  Full state feedback 

  Linear controller, based on  
linearization of nonlinear 
model 
•  centralized 

•  distributed 

  no further disturbances, but 
plant-model mismatch 

  set-point tracking 

P1 

P2 

P3 

P4 

P5 

C1 

C2 

C3 

C4 

C5 

x 

C 
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Results 

  S-DMPC provides the 
same controller 
performance as a 
centralized MPC 

  Solve 5 small QP  
in parallel  
instead of 1 large QP 

   faster computation 
possible 

(Scheu and Marquardt, 2011a) 
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Linear Discrete-Time Systems 

  Finite horizon discrete-time linear optimal control problem: 

  Write as QP 

  Apply sensitivity-driven coordination 
(Scheu & Marquardt 2011b) 
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Continuous-time vs. discrete-time 

Continuous-time 

  also possible for higher order  
input representations  

  non-uniform control-grid 
possible 

  system couplings are solved 
during transcription  

  couplings could also be 
included in finite number of 
equality-constraints 

  most natural for nonlinear 
case 

Discrete-time 

  only piecewise constant 
inputs 

  uniform control-grid 

  system couplings are 
included in equality-
constraints 

  couplings could also be 
solved by transcription 

  difficult to extent to nonlinear 
cases 
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Case Study     
  Discrete-time linear system with unknown disturbances 

  where 

  9 differential state variables 
  3 scalar inputs 
  3 scalar disturbances 
  unstable system dynamics: 

(Scheu and Marquardt 2011b) 
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MPC Setup 

  Centralized MPC – 1 monolithic controller with full system 
knowledge, large QP 

  Decentralized MPC – 3 independent controllers, small QP 
  Dual Decomposition – 3 low layer controller, 1 coordinator, small 

QP 
  S-DMPC – 3 cooperative controllers, small QPs  

  Disturbances 
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MPC Setup (cont.) 

  no terminal cost 
  long prediction and control horizon (K = 50) 
  solved using Matlab standard QP solver quadprog with standard 

settings 
  J = 30 iterations required for dual decomposition approach for 

convergence 
  J = 1 and J = 2 iterations for S-DMPC  low communication and 

computing requirements 
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Closed-loop Trajectories 

State trajectories: 

  Decentralized MPC 
•  bad disturbance 

compensation 
•  almost unstable control 

  Dual Decomposition 
•  achieves good performance 
•  requires many iterations (here 

30) 

  S-DMPC  
•  only one iteration 
•  almost matches the 

centralized control 
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Closed-loop trajectories 

Input trajectories 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
31 

Controller Performance 

  Absolute performance (quadratic performance index) 

  Relative performance (Centralized controller is reference) 

  Simulation results 
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Computing Time 

  Comparison of average computing time for the methods 
considered 

  Computing time can be reduced, in particular with multiple CPU 
cores 

  Dual decomposition is not competitive 
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Conclusions & Future Work 

Conclusions 
  S-DMPC: a new method for distributed optimal control 

•  inherits properties of centralized optimal control problem 
•  S-DMPC provides optimal performance 

  S-DMPC enables distributed computing 
•  size of QP to be solved reduced 
•  computing time can be reduced 

Future work 
•  guaranteed stability (e.g. infinite horizon, terminal constraint, …)  
•  output feedback  
•  convergence (adaptation of QP via Wegstein extension) 
•  nonlinear systems  
•  Efficient implementation and integration  

into dynamic real-time optimization platform of AVT.PT 
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Backup 
Multi Layer Model-Predictive Control 
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Dynamic Real-Time Optimization  

dynamic 
data recon- 

ciliation!

decision 
maker!

optimal 
control!

process 
including 

base control!

optimizing feedback!
control system!

process including!
base layer control!

•  "economical objectives & constraints "

•   optimal output feedback"

•   solution of optimization problems  
   at sampling frequency"

•  "computationally demanding, limited  
   by model complexity "

time 
control 

prediction reconciliation 

manipulated variables 

states 
measurements  
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decision 
maker!

tracking 
controller!

process 
including 

base control!

optimal 
trajectory 

design!

long time scale 
dynamic data 
reconciliation!

short time scale 
dynamic data 
reconciliation!

time scale 
separator!

Time-Scale Decomposition 

optimizing feedback control system!

fast time-scale 
•  measurement and 
  process noise … 
•  trajectory tracking  
  satisfying control 
  bounds and quality 
  constraints!  

slow time-scale 
•  changing environment, 
  process variations … 
•  most economical  
  trajectory satisfying 
  safety or equipment 
  constraints! 

How to account for  
process and model  uncertainty? 

How can we achieve economic optimality on the faster!
time-scale?  Fast Updates!
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MPC 

Integration of Control and Optimization 

updated  

fast trajectory updates     

reoptimization with refinement  
of control discretization  

reoptimization with coarse 
control discretization 

linear time-varying  
MPC in delta-mode"
for trajectory tracking, "

dynamic real-time  
optimization (D-RTO), "
trajectory updates  
when necessary"

D-RTO 

linear time-varying controller!

neighboring  
extremal update,"
when possible"

Kadam & M. (2004)"
Hannemann & M. (2007)"

Würth et al. (2009) 

2nd order 
sensitivity 
analysis, !
changing 
active set!
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Fast Neighboring Extremal Updates 

  parameterize uncertainty  
  exploit sensitivity information of previously solved optimization 

problem to generate an approximation of the optimal update 

Sensitivity system (Fiacco, 1983), invariant active set L: Lagrange function 
f: objective function 
g: constraints 
p: discretized controls 
 : uncertain param. 

Changing active set (Ganesh & Biegler, 1987) 

•  compute first- and second- 
  order derivatives  
•  solve QP for fast update 
•  re-iterate if necessary 

(Kadam & Marquardt, 2004; 
Würth et al., 2009) 
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Efficient Computation of 2nd order Sensitivities  

Superposition principle  
for the linear adjoint system:   
only one 2nd order adjoint system 

Hessian  
evaluation  
scales             ! 

Williams-Otto benchmark problem  

  finite differences and 2nd order forward sensitivities  
(Vassiliadis et al., 1999) scale O(np

2)  
  adjoint sensitivity analysis 

for problems without path  
constraints (Cao et al., 2003,  
Özyurt et al., 2005) 

  2nd order adjoint sensitivity  
analysis for path-constrained  
problems (Hannemann & M., 
2007, 2010)  NIXE 
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Software Realization – DRTO Toolbox (1) 

standalone  
OPC Server 

State Estimator 

DRTO Module 

MPC module 

plant  
simulation 

  Use plant simulator for 
development of advanced 
MPC control methods 

  Test communication, data 
exchange and alert 
management offline 

  Develop algorithms in 
Matlab, gPROMS, C++, ... OPC Clients 

OPC data access 

... 
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Software Realization – DRTO Toolbox (2) 

  (Data structure in plant simulation 
should be the same as in PCS) 

standalone  
OPC Server 

Plant 
Process control  
system 

  Connect the control methods to the 
real control process through the 
plant’s control system 

integrated  
OPC Server 

State Estimator 

DRTO Module 

MPC module 

plant  
simulation 

OPC Clients 

OPC data access 

... 
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Software Realization – DRTO Toolbox (3) 
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Case Study – Continuous Polymerization Process (1) 

  Large-scale industrial process (Bayer AG, Dünnebier et al., 2004) 
•  ~ 200 (dynamic) state variables 
•  ~ 2000 algebraic variables 
•  3 manipulated variables 
•  Task: Set point change from polymer A to B 

•  Disturbance: Ratio of 
monomer 1 and monomer 2 

d 
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Case Study – Continuous Polymerization Process (2) 

  Reference control strategy 
•  Objective value:  0.59 
•  Constraint violations:  1.6 

  Delayed Single-Layer DRTO 
•  Objective value:  1.18 
•  Constraint violations:  16.2 

  Single Layer: Neigboring 
Extremal Updates (NEU) 

•  Objective value:  0.74 
•  Constraint violations:  2.0 

  Two-Layer (DRTO and NEU) 
•  Objective value:  0.61 
•  Constraint violations:  2.1 

(Würth et al., 2011) 
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Experimental Evaluation in an Industrial Setting 

  Semi-batch polymerization (BASF)  
•  co-polymer of styrene & butyl-acrylate 
•  solution polymerisation 
•  complex reaction kinetics (MOM) 
•  detailed heat transfer model 

  Control objectives  
•  minimization of batch time and 

simultaneous optimization of profit 
•  disturbance rejection (feed pump failure) 
•  endpoint polymer quality constraints 

  Dynamic model (from literature) 
•  250 DAEs, 4 controls, 6 constraints 
•  5 experiments for parameter identification 

(heat transfer, viscosity, reaction kinetics) 

limited modeling effort, 
significant model uncertainty 

scope for dynamic  
real-time optimization in  
industrial environment? 
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Experimental Results   

Dynamic real-time optimization with nominal model and multi-model 

 c
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  nominal does not 
work due to model 
uncertainty 

  robustification with 
simultaneous 
optimization of 
nominal and worst-
case model 

  multi-model  
strategy meets  
quality specs and 
reduces batch time  
significantly  

2 min sampling time  
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Recovery after Feed Pump Failure 

  Scenario without / with simulated styrene pump failure 
•  Styrene pump switched-off for 15 minutes 

Control signals of 
 the optimizer to the 

process 

Measurements of 
the process 

020406080100120140051015Time [min]Feed rate styrene [g/min]  

020406080100120140012345Time [min]Holdup monomer styrene [mol]  

0204060801001201400123456Time [min]Feed rate initiator [g/min]  

02040608010012014050100150Time [min]Reactor temperature [°C]  

Blue: Undisturbed scenario 
Red:  With disturbance 
Grey: Actuator fail 



IFAC World Congress 2011, Milan - HD-MPC Workshop 
51 

On-Site and Software Implementation 

Inca OPC-Server 
(IPCOS) 

Process control system/ 
Process 

Dynamic optimization 
(DyOS, Matlab) 

Sampling rate 120 s 

MPC-Controller 
(Matlab)  

Sampling rate 10 s 

(Matlab) 
Sampling rate 10 s 

State estimation 

Measurements 

States,  

Controls 

Controls 

How can we overcome !
limitations in the size of !
the process considered?!

 Distributed MPC!


