Hierarchical and Distributed
Optimization Methods

Moritz Diehl, Attila Kozma, Carlo Savorgnan

Optimization in Engineering Center OPTEC
and Electrical Engineering Department ESAT
K.U. Leuven, Belgium

IFAC WC Milano,

O PTEC August 28, 2011

J
uven Optimization in Engineering Center H D - M P C

| SADES!,
#5s s‘"’%
ol

=
(=
g’o,

Overview

® Motivation for Centralized Computation
® Distributed Multiple Shooting Framework

® Adjoint Based SCP Methods, from Hierarchical to Distributed

® Software

Motivation for Hierarchical and Distributed MPC

Large-scale systems in engineering
@ composed of multiple subsystems
@ complex nonlinear dynamics and
@ mutual influences

E.g. river networks, chemical production sites, airflow in buildings.

How to compute optimal controls e.g. for transients?]

Two Central Observations on distributed MPC

(1) For cooperative model predictive control, we ideally want to solve
one large centralized MPC problem.

Reasons for distributed setup:

® Robustness and easier reconfigurability

® Distribution of data and model maintenance

® Parallel computations (ideally, solution time independendent of size)
® Hope that less communication is needed than in centralized setting

(2) Most distributed MPC methods work iteratively and focus on parallelizing
each iteration. But even if solution time for each iteration is independent
of size, the convergence speed mostly deteriorates with size of the
problem (usually linear or sublinear rates).

Distributed computation and communication time might be much
higher than for one centralized solution, i.e. many processors
together working very hard can be slower than one single one!

(Interlude: Large Scale QP algorithms)

Decomposition by Lagrangian dual function

: 1
min —X; Qix; + ¢; X,
51 aaaa ﬁN Iz::l: 2_
s.t. Hi§-<d I:].,.

s Convex separable QP

s Coupling lin. equality

2|l

s Two-level problem

» Low-level: parametric QPs
(online act. set strat.)

» High-level: unconstr.
problem with gradient avalil
(fast gradient method)

(Runtime Comparison in Our Initial Work)

Solve large distributed quadratic program with 100 subsystems on 100
CPUs, using different dual decomposition methods:

Wall clock:) Nesterov Gradient
10~ 0:55 02:58
1074 1:55 03:59
107 2:52 04:56
10°° 3:29 05:52

Same problem takes 0:03 seconds on a single CPU
when solved with a sparse IP method (OOQP from S. Wright).

Problem of all gradient methods: no second order information,
slow linear convergence. Better parallelize IP solver!

Can simulation efficiently be parallelized ?

Assumption: simulators for individual subsystems exist |

@ use their own adaptive numerical integration schemes
@ based on possibly different modelling languages

@ can provide derivatives in forward and reverse mode (not yet
standard, but provided e.g. by SUNDIALS, DASPK,

DAESOL-IlI, ACADO Integrators, ...)

Example: Hydro Power Valley (HPV) Benchmark

River reaches connected by dams and
hydro power units.
NMPC control aims:

@ strictly respect level constraints

@ match total power demand

@ keep levels as constant as possible

HPV consists of 8 coupled subsystems

9in

Hydro Power Valley (HPV)

Water flow in reaches modeled by Saint Venant PDE:

(0 t OH(z, t
Q1) | OH(z1)
ot

Z pr—
1 9 [(Q(z,1t) 1 9 Qz(t,z)> OH(t,z)
/ —Ih=0
\ gW@f(H(Zst)>+2gW20z(Hz(t.z) T, Tk

Transform PDE into ODE by spatial discretization.

N

The "Simulation Box” (e.g. one reach of HPV)

coupling input

control inputl l

initial state =——> — ond state

!

coupling output

Centralized Optimal Control

Tz,
Y,€

S.T. T

min / ((e(t))dt +) / C(x(t), vl (t), 24(t))dt
0 1 /0

.

pH(zt(t),u*(t)) >0, qle(t)) >0 te]0,T]

Key idea: The signals z*(t), *(¢) and e(t) can be represented as a
linear combination of orthogonal polynomials.

Distributed Multiple Shooting yields sparse NLP

N-1 M
min E Ln(en) + E L (x,,, u,, Z,
1 1 1
UnTnolny i=1
Yn:€n . —
. - (2 T (2 -
s.t Tpp1 = Frlay, uy, 2;,) n =0,
T — " (2 oy —
Yn = Gn(Tn; Un, Zy) n=>0,
Tn = Ty
i NM AT
< Zp, Zi:l Azjyn

Distributed Multiple Shooting

Multiple Shooting [Bock and Piitt 1984], but in time AND SPACE

_ _ _ _ e discretized subsystem
Int. = int. —=fint. = - - - —>fint. connections (polynomials)
v v v)
) e sline bl ing b -0 oine s gaps between subsystems
O
a)) v v s any complex topology
n
y y y y
int. [{int. | Int. [-+ = Int.
\ 4
>

time

Large Scale Nonlinear Program (NLP)

Each simulation box x; = ¢;(Xi, uj) also evaluates an objective
fi(X;, u;) and inequality constraints g;(X, u;).

X; = output of each simulation box.
X; = Input, lin. combination of other outputs

minimizey E fi(Xi. uj)

subject to X , Uj) @: 0.

Note: coupling constraints only feasible in solution!
Simultaneous method for simulation and optimization.

Sequential Convex Programming (SCP)

Assuming f;, g; convex and known to central optimizer, can
linearize simulation boxes at linearization points X;. i;.

N
minimizey Z fi(Xi, u;)
=1
. oy, 901X, T) [X=X _
subject to [@,(X,,u,)—|— o(X. [u;—D, B—x, =
g,'(X,', U,') <0, e[l N].

lteratively solving linearized convex problems for obtaining the next
linearization point yields a generalization of SQP, Sequential
Convex Programming (SCP). Can prove linear convergence
towards local minima [Necoara et al, CDC, 2009], [T. D. Quoc and

MD, BFG, 2010].

Adjoint based SCP Method

Approximate ag,-((;,-l,jr;,-) by cheaper A;. Add gradient correction to
objective. |

N ~ S =T

... Do;(X;. u;) -

minimizey z; fi(Xi, uj) + [XiT|UiT] (i)((X. ;) by

|=
subject to oi(Xi, Uj) + A; [Xi - %’] — x; =0,

u, — uj
gi(Xi: U,') < O: S []” NJ.

Solution x*, u™ and equality multipliers 0* yield next linearization
point X, ot and multiplier guess, A\t = \ + 6*.

Linear convergence proven [D., Walther, Bock, Kostina, OMS,
2009], [Quoc et al. 2010].

Why are inexact derivatives interesting ?

o ae(Xe) . .
o derivative 221X g 5 |arge dense matrix, expensive to
X 1)

compute

e often, only few strongly coupling variables X,.A in
X = (X,-A, X,-B), so can cheaply approximate derivative:

OP; ‘ Ap; ’ 9oi | | 99i ‘ 0 ’ Ip;i | . A
X7 dXE duj | | aXA Au; | —- 71
T

: : Vi (X;,4;
o evaluate gradient correction “2(5:0) " X by reverse
A(X,u)

differentiation, only 4 times more expensive than simulation
¢i(Xi, uj). One single extended simulation box call.

@ Less communication: variables xZ and multipliers \Z only
passed between child and parent nodes. Central optimizer
works with aggregate model in x” and v only.

Variant: left part of A, = 0, get completely distributed convex subproblems!

Adjoint SCP: both Hierarchical and Distributed

® Exact SCP: all coordination work done by central agent who
solves convex subproblems. 100% hierarchical.

® Adjoint based SCP with partially zero derivative matrices A; :
only most influential variables coordinated by central agent, fine
Interactions are exchanged locally.

® Adjoint based SCP with completely zero derivative matrices A; :
all information is exchanged locally, convex problem
decomposes, no central agent necessary: 100% distributed.

Trade-off: convergence speed vs distributed solution

Overview

® Motivation for Centralized Computation
® Distributed Multiple Shooting Framework

® Adjoint Based SCP Methods, from Hierarchical to Distributed

® Software

ACADO Toolkit for Nonlinear MPC

with Joachim Ferreau and Boris Houska

Software for Nonlinear MPC: ACADO Toolkit

® ACADO = Automatic Control and Dynamic Optimization

® Open source (LGPL):

® User interface close to mathematical syntax
® Self containedness: only need C++ compiler
® Focus on small but fast applications

Problem Classes in ACADO

® Optimal Control of Dynamic Systems (ODE/DAE)

minimize [;)T L(t,y(7),u(7),p)dr + M(y(T),p)
y(-),u(-),p,T '

subject to:
Vte [0.7]: 0 = f(t,y(t),y(t),u(t),p)

0 = 7rw0),y(T).p)

Vte [0,T]: 0 > s(t,y(t),u(t),p)

® Nonlinear Model Predictive Control

® Parameter Estimation and Optimum Experimental Design
® Robust Optimization

® Automatic Code Generation for fast MPC applications

Example for Code Generation (“Tiny“ Scale)

DifferentialState p,V,phi,omega; .
Control a Algorithm: Gauss Newton Real-

_ Time lterations
Matrix Q = eye(4);
1

Matrix R = eye() ;
DifferentialEquation f; 1 control input
f « dot(p) == V; .
P o a 10 control intervals
f « dot(phi) == omega; 4 states
f « dot (omega) == -gx*sin(phi)
-axcos (phi) -bxomega; CPU time | Percentage
OCP ocp(0.0, 5.0 ,10); Integration & sensitivities 34 118 63 %
ocp.minimizeLSQ(Q, R); _
Condensing 11 ps 20 %
ocp.subjectTo(£); _ .
ocp.subjectTo(-0.2 <= a <= 0.2); QP solution (with gpOASES) D 18 9%
OptimizationAlgorithm algorithm(ocp) ; Remaining operations < H s <8%

algorithm.solve() ; - - .
One complete real-time iteration 54 1S 100 %

NMPC with 200 kHz possible !

Modelica and Automatic Derivatives with
CasADi

with Joel Andersson

® CasADi
« “Computer Algebra System for Automatic Differentiation”
* Free (LGPL) open-source symbolic tool (www.casadi.org)
 Extends the NLP approach for OCP to shooting methods
« “Write a state-of-the-art multiple shooting code in 50 lines”

CasADi

CasADi — NLP approach for Shooting Methods

Components of CasADi
® A computer algebra system for algebraic modeling
® Efficient, general implementation of AD
« AD on sparse, matrix-valued computational graphs
* Forward/adjoint mode
« (Generate new graphs for Jacobians/Hessians
e Efficient virtual machine for function/derivative evaluation
® Front-ends to C++, Python and Octave
® Smart interfaces to numerical codes, e.g.:
* NLP solvers: IPOPT, KNITRO, (SNOPT, LiftOpt)
« DAE integrators: Cvodes, Idas, GSL
« Automatic generation of Jacobian information (for BDF)
« Automatic formulation of sensitivity equations (fwd/adj)
® Symbolic model import from Modelica (via Jmodelica.org)

CasADI/CVODES for Sensitivies of HPV subsystem

2.8

For full problem:
. ® Total: 48 time
wal «] intervals, 8
L subsystems = 384
o o ' simulation boxes
= g L] ® Sensitivity Integration
_ * _ of full system on full
- £ horizon would take
b, : 1630 sec
1.4l ® Compare thisto 1.5

0 1 2 3 4 5 6 7.8 9 10 11 12 13 14 15
T up to 2.7 sec per

simulation box.
Fig. 4. Time required to integrate and linearize a subsys-
tem dynamics for an time interval of 30 minutes using
S = 15.

0 = only forward w.r.t. controls and adjoint, fully distributed
15 = all forward derivatives, full space exact SCP

Summary: Large Nonlinear MPC

® |n cooperative MPC we want to solve centralized optimization problems,
and centralized algorithms might be more efficient in both time and
communication than distributed ones

® Distributed Multiple Shooting (DMS) is a way to parallelize simulation and
sensitivity generation

® Adjoint based SCP Algorithms for DMS allow many variants between fully
hierarchical and fully distributed algorithms

Software (LGPL):

® ACADO Toolkit and code generation allow fast nonlinear MPC for small
problems (e.g. 200 kHz for 4 states)

® CasADi allows one to easily couple integrators and
optimizers and setup e.g. distributed multiple shooting
- Talk Attila Kozma, Monday, 11:20, room Vito

HD-MPC

Appendix

Large-scale separable convex optimization (T.Quoc)

® Problem Statement

r M
mlming(x) = Z fi(, @ f,: R™ — R -convex, possible nonsmooth
..... -
(CP) < @ X; C R™ —closed convex, bounded

M
s.t. E AZTL :b,
=1

\ CEZEXZ,Zzl,,M Q
® Examples Q
— Large-scale LPs, QPs. \
— Optimization in networks, graph theory. @
— Multi-stage stochastic convex optimization. @/

— Distributed MPC, etc.

® Aim:
— Design distributed algorithms to solve (CP)

Main idea and algorithms

® Main idea: Combine three techniques
— Lagrangian dual decomposmon

d(y) = Z di(y)
— Smoothing technique via prox functlons
foo () := max {$(z) + (Az — b)"y—Papy (y)}
dg, (v) := min { (@) + y" (Az — b)+S1px ()}
— Excessive gap condition [Nesterov20058]

fﬁz (z) < d,Bl (%)

® Optimality and feasibility gaps
0 < ¢(Z) —d(g) < 1D, and ||AT —b[| < S2Dy.

® Algorithm: two variants — primal update and switching update

— Generate a sequence {(Z, %)} such that it maintains the excessive gap
condition, while controls (3, and f9to zero.

Advantages and performance

® Advantages
— Convergence rate O(1/k)

— Fast (compared to dual-fast gradient method [Necoara2008], subgradient,
augmented Lagrangian)

— Numerical robustness
— Highly distributed

® Numerical test: Large scale separable QP problems (dense)

Algorithm 1
Algorithm 2 ||
——— ADCA

Algorithm 1
Algorithm 2
——— ADCA

3 4 5 P 7 8 0 1 2 3 4 5 6 7 8
T

Compare three difference algorithms: primal update, switching update, dual-fast gradient for solving
random QPs (left — iterations, right — CPU time)

Coupling between subsystems

Dynamics of subsystems are coupled via in-/output profiles of
“coupling variables”. Infinite dimensional coupling.

Coupling between subsystems

Dynamics of subsystems are coupled via in-/output profiles of
“coupling variables” .

Infinite dimensional coupling.

Can approximate coupling profile by orthogonal polynomials:

350.1

350

349.9

3498
349.7F
CS 3496
3495
3494
3493
34921

2491
0

/ " Pi(t)Py()dt {

0
1

1
200

1
400

1
600
t

1
800

1
1000

J
1200

if 1 #

otherwise

Approximation of typical
output water discharge
profile (black) by
polynomials of degree 1, 4
and 7.

CasADi Code Example: Single Shooting in 30 lines

£ di i £ *
rom casadl 1mpor # Build up a graph of integrator calls

for k in range(NU):

M . . .
Declare variables (use simple, efficient DAG) [X.XP,Z] = I.call([TO,TF,X,ULk],XP,Z])

t = SX("t") # time

SRR T T TR T s # Objective function: L(T)

F = MXFunction([U], [X[2
ODE right hand side function unction([U], (X[211)

f=[(1-y*y)*x - y + u, x, x*x + y*y + u*u]

rhs = SXFunction([[t], [x,y,L], [ull, [£]) # Terminaljconstralints: 0cs[x(D)y(1)1s=0

G = MXFunction([U], [X[0:2]])

Create an integrator (CVodes) # Create NLP solver

I = CVodesIntegrator(rhs) lver = IpoptSolver(F.G)
I.setOption("abstol",1e-10) # abs. tolerance sol er tgoz‘ o(":rln’l -5)
I.setOption("reltol",1e-10) # rel. tolerance SO ver.set prtlon " il e . C
I.setOption("steps_per_checkpoint®,100) solver.setOption("hessian_approximation", \
I.init0) T ’ "limited-memory")

solver.setOption("max_iter",1000)

All controls (use complex, general DAG) LB

— - = nyn
BURS 20 RUSSEMXCEUS, HU) # Set bounds and initial guess

solver.setInput (NU*[-0.75], NLP_LBX)
solver.setInput (NU*[1.0] ,NLP_UBX)
solver.setInput (NU*[0.0] ,NLP_X_INIT)
solver.setInput([0,0] ,NLP_LBG)
solver.setInput([0,0] ,NLP_UBG)

The initial state (x=0, y=1, L=0)
X = MX([0,1,0])

Time horizon
TO = MX(0); TF = MX(20.0/NU)

Solve the problem

State derivative, algebraic state (not used)
solver.solve()

XP = MX(); Z = MX()

