
Hierarchical and Distributed
Optimization Methods
Moritz Diehl, Attila Kozma, Carlo Savorgnan

Optimization in Engineering Center OPTEC
and Electrical Engineering Department ESAT

K.U. Leuven, Belgium

IFAC WC Milano,
August 28, 2011

Overview

 Motivation for Centralized Computation

 Distributed Multiple Shooting Framework

  Adjoint Based SCP Methods, from Hierarchical to Distributed

  Software

Motivation for Hierarchical and Distributed MPC

Two Central Observations on distributed MPC

(1) For cooperative model predictive control, we ideally want to solve
one large centralized MPC problem.

Reasons for distributed setup:
 Robustness and easier reconfigurability
 Distribution of data and model maintenance
  Parallel computations (ideally, solution time independendent of size)
 Hope that less communication is needed than in centralized setting

(2) Most distributed MPC methods work iteratively and focus on parallelizing
each iteration. But even if solution time for each iteration is independent
of size, the convergence speed mostly deteriorates with size of the
problem (usually linear or sublinear rates).
 Distributed computation and communication time might be much
higher than for one centralized solution, i.e. many processors
together working very hard can be slower than one single one!

(Interlude: Large Scale QP algorithms)

Decomposition by Lagrangian dual function

"  Convex separable QP

"  Coupling lin. equality

"  Two-level problem

"  Low-level: parametric QPs
(online act. set strat.)

"  High-level: unconstr.
problem with gradient avail.
(fast gradient method)

(Runtime Comparison in Our Initial Work)

Solve large distributed quadratic program with 100 subsystems on 100
CPUs, using different dual decomposition methods:

Wall clock:

Same problem takes 0:03 seconds on a single CPU
when solved with a sparse IP method (OOQP from S. Wright).

Problem of all gradient methods: no second order information,
slow linear convergence. Better parallelize IP solver!

Can simulation efficiently be parallelized ?

Example: Hydro Power Valley (HPV) Benchmark

HPV consists of 8 coupled subsystems

Hydro Power Valley (HPV)

The "Simulation Box” (e.g. one reach of HPV)

Centralized Optimal Control

Distributed Multiple Shooting yields sparse NLP

Distributed Multiple Shooting

Multiple Shooting [Bock and Plitt 1984], but in time AND SPACE

"  discretized subsystem
connections (polynomials)

"  gaps between subsystems

"  any complex topology

Large Scale Nonlinear Program (NLP)

Note: coupling constraints only feasible in solution!
Simultaneous method for simulation and optimization.

xi = output of each simulation box.
Xi = Input, lin. combination of other outputs

Sequential Convex Programming (SCP)

Adjoint based SCP Method

Why are inexact derivatives interesting ?

Variant: left part of Ai = 0, get completely distributed convex subproblems!

Adjoint SCP: both Hierarchical and Distributed

  Exact SCP: all coordination work done by central agent who
solves convex subproblems. 100% hierarchical.

  Adjoint based SCP with partially zero derivative matrices Ai :
only most influential variables coordinated by central agent, fine
interactions are exchanged locally.

  Adjoint based SCP with completely zero derivative matrices Ai :
all information is exchanged locally, convex problem
decomposes, no central agent necessary: 100% distributed.

 Trade-off: convergence speed vs distributed solution

Overview

 Motivation for Centralized Computation

 Distributed Multiple Shooting Framework

  Adjoint Based SCP Methods, from Hierarchical to Distributed

  Software

Real-time perception-based clipping of
audio signals using convex optimization ACADO Toolkit for Nonlinear MPC

with Joachim Ferreau and Boris Houska

Software for Nonlinear MPC: ACADO Toolkit

 ACADO = Automatic Control and Dynamic Optimization

 Open source (LGPL): www.acadotoolkit.org
 User interface close to mathematical syntax
 Self containedness: only need C++ compiler
  Focus on small but fast applications

Problem Classes in ACADO

 Optimal Control of Dynamic Systems (ODE/DAE)

 Nonlinear Model Predictive Control
 Parameter Estimation and Optimum Experimental Design
 Robust Optimization
 Automatic Code Generation for fast MPC applications

Example for Code Generation (“Tiny“ Scale)

Algorithm: Gauss Newton Real-
Time Iterations

1 control input
10 control intervals
4 states

NMPC with 200 kHz possible !

Real-time perception-based clipping of
audio signals using convex optimization
Modelica and Automatic Derivatives with
CasADi

with Joel Andersson

CasADi

 CasADi
•  “Computer Algebra System for Automatic Differentiation”
•  Free (LGPL) open-source symbolic tool (www.casadi.org)
•  Extends the NLP approach for OCP to shooting methods
•  “Write a state-of-the-art multiple shooting code in 50 lines”

CasADi – NLP approach for Shooting Methods

Components of CasADi
  A computer algebra system for algebraic modeling
  Efficient, general implementation of AD

•  AD on sparse, matrix-valued computational graphs
•  Forward/adjoint mode
•  Generate new graphs for Jacobians/Hessians

  Efficient virtual machine for function/derivative evaluation
  Front-ends to C++, Python and Octave
  Smart interfaces to numerical codes, e.g.:

•  NLP solvers: IPOPT, KNITRO, (SNOPT, LiftOpt)
•  DAE integrators: Cvodes, Idas, GSL

•  Automatic generation of Jacobian information (for BDF)
•  Automatic formulation of sensitivity equations (fwd/adj)

  Symbolic model import from Modelica (via Jmodelica.org)

CasADi/CVODES for Sensitivies of HPV subsystem

For full problem:
  Total: 48 time

intervals, 8
subsystems = 384
simulation boxes

  Sensitivity Integration
of full system on full
horizon would take
1630 sec

 Compare this to 1.5
up to 2.7 sec per
simulation box.

0 = only forward w.r.t. controls and adjoint, fully distributed
15 = all forward derivatives, full space exact SCP

Summary: Large Nonlinear MPC

  In cooperative MPC we want to solve centralized optimization problems,
and centralized algorithms might be more efficient in both time and
communication than distributed ones

 Distributed Multiple Shooting (DMS) is a way to parallelize simulation and
sensitivity generation

  Adjoint based SCP Algorithms for DMS allow many variants between fully
hierarchical and fully distributed algorithms

Software (LGPL):
  ACADO Toolkit and code generation allow fast nonlinear MPC for small

problems (e.g. 200 kHz for 4 states)
 CasADi allows one to easily couple integrators and

 optimizers and setup e.g. distributed multiple shooting
  Talk Attila Kozma, Monday, 11:20, room Vito

Appendix

Large-scale separable convex optimization (T.Quoc)

– convex, possible nonsmooth

– closed convex, bounded

 Problem Statement

 Examples
–  Large-scale LPs, QPs.
–  Optimization in networks, graph theory.
–  Multi-stage stochastic convex optimization.
–  Distributed MPC, etc.

 Aim:
–  Design distributed algorithms to solve (CP)

 Main idea: Combine three techniques
–  Lagrangian dual decomposition

–  Smoothing technique via prox-functions

–  Excessive gap condition [Nesterov2005]

 Optimality and feasibility gaps
 and

 Algorithm: two variants – primal update and switching update
–  Generate a sequence such that it maintains the excessive gap

condition, while controls and to zero.

Main idea and algorithms

Advantages and performance
 Advantages

–  Convergence rate O(1/k)
–  Fast (compared to dual-fast gradient method [Necoara2008], subgradient,

augmented Lagrangian)
–  Numerical robustness
–  Highly distributed

 Numerical test: Large scale separable QP problems (dense)

 Compare three difference algorithms: primal update, switching update, dual-fast gradient for solving
random QPs (left – iterations, right – CPU time)

Coupling between subsystems

Coupling between subsystems

CasADi Code Example: Single Shooting in 30 lines

