

Bart De Schutter
Delft Center for Systems and Control

Hierarchical MPC with applications in transportation and infrastructure networks

Milan, Italy, August 28, 2011

- 1 HD-MPC for large-scale systems
- 2 Traffic management and automated highway systems
- 3 Multi-level multi-scale HD-MPC for AHS
- 4 Related work
- 5 Conclusions and future work

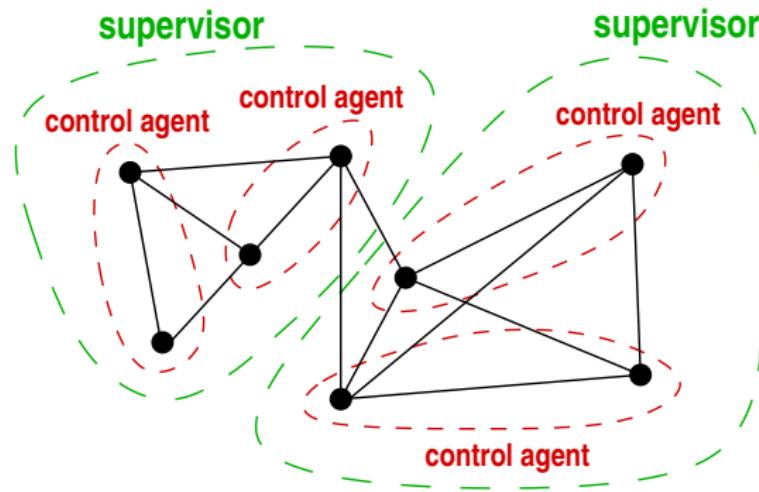
Challenges in control of large-scale networks:

- Large-scale networks
- Distributed vs centralized control
- Optimality \leftrightarrow computational efficiency/tractability
- Global \leftrightarrow local
- Scalability
- Communication requirements (bandwidth)
- Robustness against failures

→ multi-level multi-agent approach

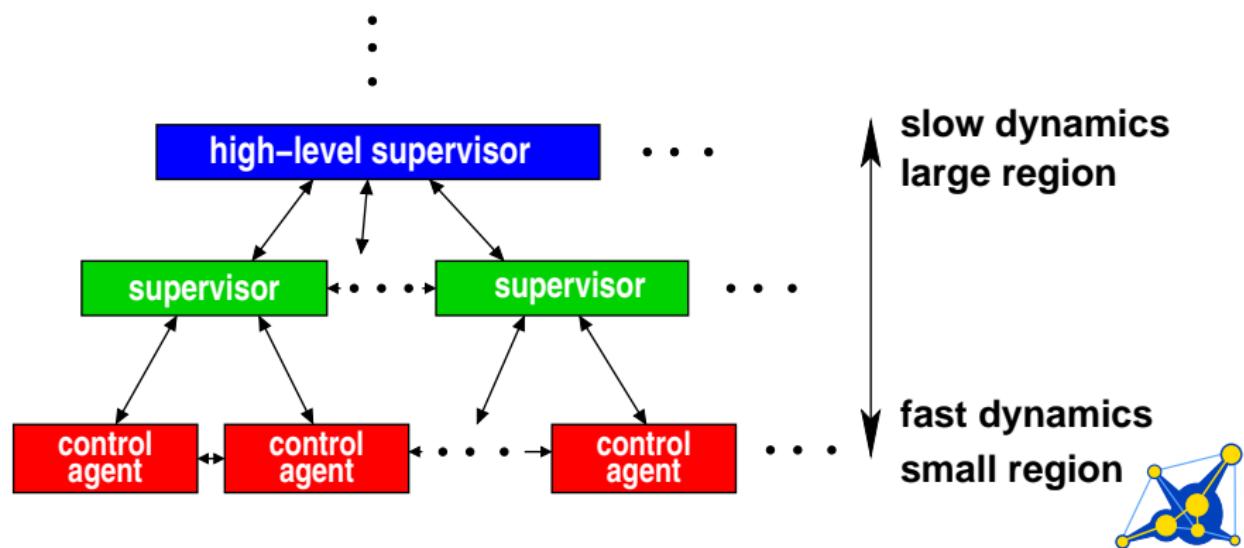
Multi-level multi-agent control

- Multi-level control with intelligent control agents & coordination
- Time-based and space-based separation into layers



Multi-level multi-agent control

- Multi-level control with intelligent control agents & coordination
- Time-based and space-based separation into layers



Multi-level control framework

- Lowest level:
 - local control agents
 - “fast” control
 - small region
 - operational control
- Higher levels:
 - supervisors
 - “slower” control
 - larger regions
 - operational, tactical, strategic control
- Multi-level, multi-objective control structure
- *Coordination at and across all levels*
- Combine with model predictive control (MPC)

Major problem for MPC in practice: Required computation time for large-scale systems

- Use distributed and/or hierarchical control approach
- Choice of the prediction model: accuracy versus computational complexity
- Right optimization approach
 - parallel and/or distributed optimization
 - approximate original MPC optimization problem by another optimization problem that can be solved efficiently
- Include application-specific knowledge

Need for traffic control

Traffic jams & congestion

→ cause time losses, extra costs, more incidents

have negative impact on economy, environment, society

Several ways to reduce traffic jams and to improve traffic performance:

- New infrastructure, missing links
- Pricing
- Modal shift
- Better use of available capacity through **intelligent traffic control**

Intelligent traffic control

Next generation traffic control and management system

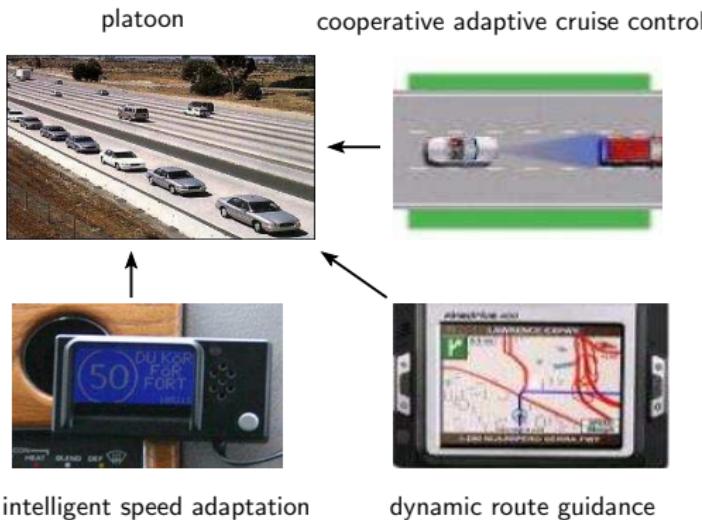
- Use in-car telematics (navigation, telecommunication, information, . . .) systems
- Vehicle-vehicle + vehicle-roadside communication
- Use intelligent vehicles (IVs)
 - control system senses environment using sensors
 - enhances either performance of driver or vehicle itself
 - assisting (advisory/warning)
 - taking partial or complete control (full automation)
- Two variants of traffic management using IVs:
 - cooperative vehicle-infrastructure systems (CVIS): drivers are still in charge of their vehicles
 - **Automated Highway Systems (AHS):** autonomous vehicles organized in platoons

Automated highway systems (AHS)

- Platoons of intelligent, autonomous vehicles
- Small inter-vehicle distance inside distances + high speeds
→ higher throughput
- Larger inter-platoon distance for safety
- Problems:
 - transition
 - psychological & legal aspects
→ long-term, trucks

Automated highway systems (AHS)

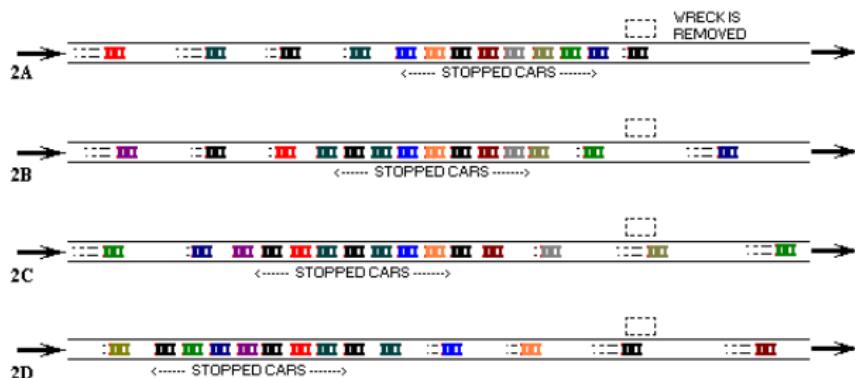
- Integrate various in-vehicle and roadside-based traffic control measures that support platoons of fully autonomous IVs



- Goal: improved traffic performance (safety, throughput, environment, ...) + constraints (robustness, reliability, ...)

Additional advantage of platoons: No capacity drop

- Capacity drop for human drivers: If traffic flow breaks down, then afterwards outflow from congested area is less than previous higher flow



- Reason: Human drivers tend to accelerate more slowly when they are coming out of congestion
- This effect plays less or even not with autonomous vehicles

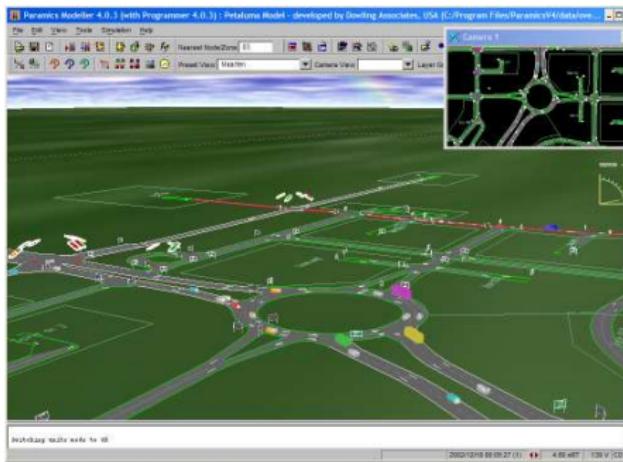
Traffic flow models

Two main classes:

- Microscopic models → individual vehicles
- Macroscopic models → aggregated variables

Microscopic traffic flow models

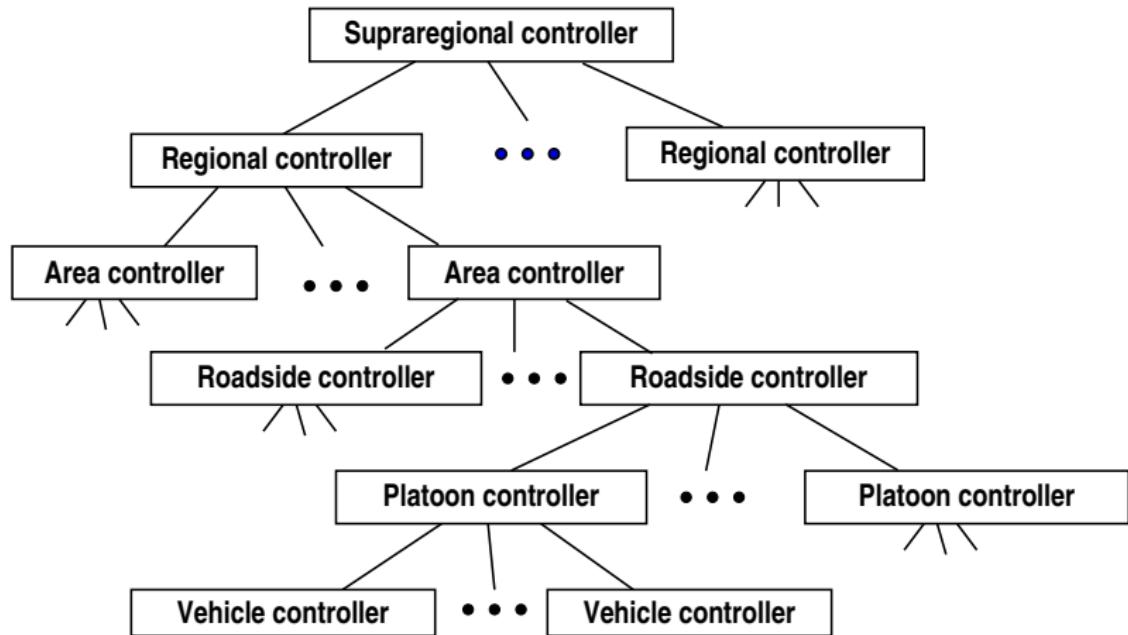
- Consider individual vehicles
- Car following + lane changing + overtaking models
- Different driver classes (with different parameters settings)
- Simulation rather time-consuming for large networks
 - less suited as prediction model for MPC
 - better suited as simulation/validation model



Macroscopic traffic flow models

- Work with aggregated variables (average speed, density, flow)
- Examples:
 - fluid-like models: Lighthill-Whitham-Richards (LWR), Payne, METANET, ...
 - gas-kinetic models: Helbing model, ...
- Trade-off between computational speed versus accuracy
 - well suited as prediction model for MPC
 - less suited as simulation/validation model
- In this presentation we use macroscopic models *for automated highway systems* as prediction model for MPC

A multi-level multi-scale HD-MPC approach for AHS →
hierarchical multi-layer control approach (~ California PATH)



Controller	Unit	Control	Time scale
Vehicle	vehicle	throttle, brake, steering	$\ll s$
Platoon	vehicles	distances & speeds, trajectories	$< s$
Roadside	platoons	lanes & speeds, split & merge	s-min
Area	flows of platoons	routing	$> \text{min}$
Regional	flows	routing	$> 15\text{--}30 \text{ min}$

Control strategies

- Vehicle controllers: (adaptive) PID + logic (for safety)
- Platoon controllers: rule-based control, hybrid control
- Roadside, area, regional controllers: MPC

$$\min_{u(k), \dots, u(k+N_c-1)} J(k)$$

s.t. model of system
operational constraints

- medium-sized problems due to temporal & spatial division
- still tractable
- Coordination (top-down) via performance criterion J or constraints

Roadside controllers

- Control highway or stretch of highway
- Measurements: position, speed, lanes of platoon leaders
- Control inputs: platoon speeds, lane allocations, on-ramp release times
- Objectives:
 - track speed and splitting rate profiles imposed by area controllers
 - minimize total time spent (TTS) in network and queues, ...
- Constraints: min. headway, min. and max. speeds

MPC for roadside controllers

- Model: “big-car” model
platoon = vehicle with speed-dependent length

$$L_{\text{platoon},p}(k) = (n_p - 1)S_0 + \sum_{i=1}^{n_p-1} T_{\text{gap},i} v_{n_p}(k) + \sum_{i=1}^{n_p} L_i$$

with S_0 minimum safe distance at zero speed and $T_{\text{gap},i}$ the desired time gap

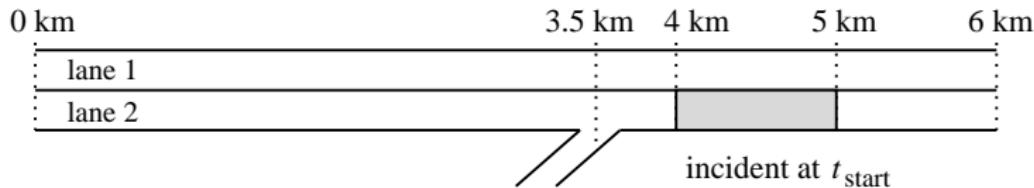
- Nonlinear optimization problem:
$$\min (\text{TTS links} + \text{TTS queues})$$

subject to nonlinear model
operational constraints

- Optimization: mixed-integer nonlinear programming
Simplify by bi-level approach in which first lane allocation is determined (via heuristics, optimized, slower rate, . . .)

Case study – Problem statement

Two-lane highway with an incident causing traffic



Scenario:

- Demand: 2500 veh/h (mainstream) and 350 veh/h (on-ramp)
- Incident at 4-5 km, start of simulation (10 minutes)
- Queues at start: empty
- Simulation period: 10 min, controller sampling time: 1 min
- Simulation sampling time: 1 s

Case study – Cases

Cases considered:

- Uncontrolled human drivers
- Controlled human drivers (current situation)
- Platoon approach – our approach

Case study – Results

Case	TTS (veh·h)	Relative im- provement (%)
Uncontrolled	71.80	0 %
Controlled (human drivers)	63.38	10.96 %
Controlled (platoons)	57.75	18.86 %

Reduced TTS → decreased travel times, increased trips, ...

Area controllers

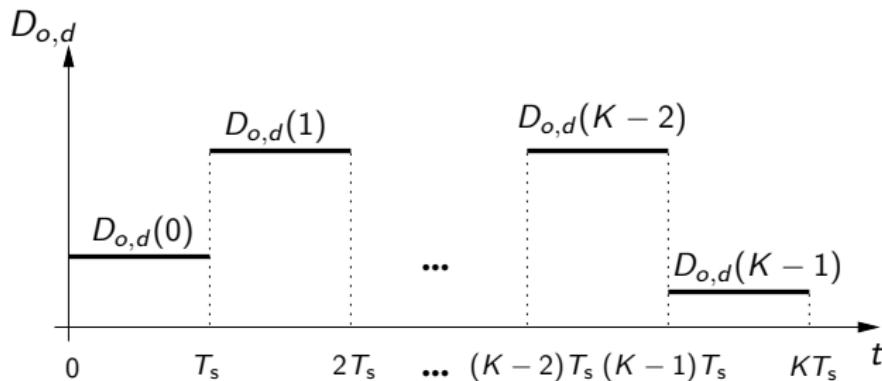
- Route guidance + provide set-points for roadside controllers
- Traffic network is represented by graph with nodes and links
- Due to computational complexity, optimal route choice control done via flows on links
- Optimal route guidance: nonlinear *integer* optimization with high computational requirements → intractable

Area controllers (contd.)

- Fast approaches based on
 - Mixed-Integer *Linear Programming* (MILP)
 - transform nonlinear problem into system of linear equations using binary variables
 - can be solved efficiently using branch-and-bound; several efficient commercial and freeware solvers available
 - macroscopic METANET-like traffic flow model
 - for humans, splitting rates are determined by traffic assignment
 - in AHS, splitting rates considered as controllable input
 - will result in non-convex *real-valued* optimization

MILP approach – General set-up

- Only consider flows and queue lengths
- Each link has maximal allowed capacity constraint
- Piecewise constant time-varying demand - $[kT_s, (k + 1)T_s)$ for $k = 0, \dots, K - 1$ with K (simulation horizon)



- Main goal: assign optimal flows $x_{I,o,d}(k)$

MILP approach – Model

- Inflow at origin:

$$\sum_{l \in L_o^{\text{out}} \cap L_{o,d}} x_{l,o,d}(k) \leq D_{o,d}(k) + \frac{q_{o,d}(k)}{T_s} \quad \text{for each } d \in \mathcal{D}$$

- Outflow from origin to destination:

$$F_{o,d}^{\text{out}}(k) = \sum_{l \in L_o^{\text{out}} \cap L_{o,d}} x_{l,o,d}(k)$$

- Assume constant delay κ between beginning and end of link
- Queue behavior at origin: Total demand – outflow
- More specifically, $D_{o,d}(k) - F_{o,d}^{\text{out}}(k)$ in time interval $[kT_s, (k+1)T_s)$

$$q_{o,d}(k+1) = \max(0, q_{o,d}(k) + (D_{o,d}(k) - F_{o,d}^{\text{out}}(k))T_s)$$

MILP approach – Equivalences

P1: $[f(x) \leq 0] \iff [\delta = 1]$ is true if and only if

$$\begin{cases} f(x) \leq M(1 - \delta) \\ f(x) \geq \epsilon + (m - \epsilon)\delta \end{cases}$$

P2: $y = \delta f(x)$ is equivalent to $\begin{cases} y \leq M\delta \\ y \geq m\delta \\ y \leq f(x) - m(1 - \delta) \\ y \geq f(x) - M(1 - \delta) \end{cases}$

- f function with upper and lower bounds M and m
- δ is a binary variable
- y is a real-valued scalar variable
- ϵ is a small tolerance (machine precision)
- transform max equations into MILP equations

MILP approach – Transforming the queue model

$$q_{o,d}(k+1) = \max(0, q_{o,d}(k) + (D_{o,d}(k) - F_{o,d}^{\text{out}}(k)) T_s)$$

Define

$$[\delta_{o,d}(k) = 1] \iff [q_{o,d}(k) + (D_{o,d}(k) - F_{o,d}^{\text{out}}(k)) T_s \geq 0]$$

Can be transformed into MILP equations using equivalence P1

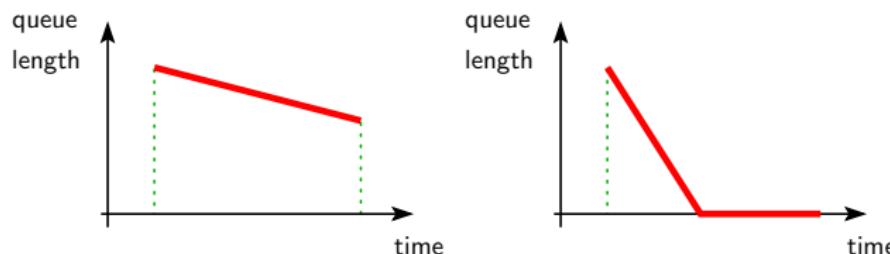
$$q_{o,d}(k+1) = \delta_{o,d}(k) \underbrace{\left(q_{o,d}(k) + (D_{o,d}(k) - F_{o,d}^{\text{out}}(k)) T_s \right)}_{f \text{ (linear)}} \\ = z_{o,d}(k)$$

Product between $\delta_{o,d}(k)$ and f can be transformed into system of MILP equations using equivalence P2

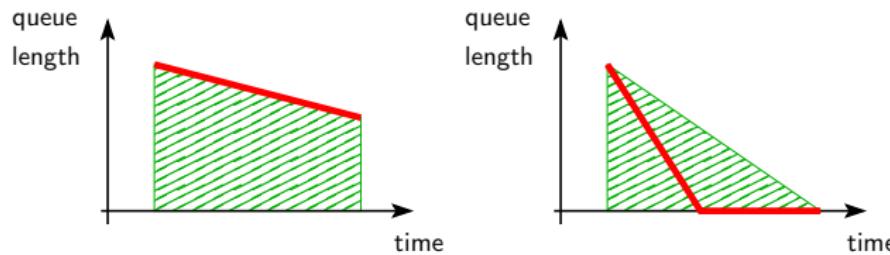
Queue model \rightarrow system of MILP equations

MILP approach – Objective function for queues

Original objective function: time spent in queues
(linear/quadratic):



Approximated objective function (linear):



MILP approach – Objective Functions

- Time spent in links:

$$J_{\text{links}} = \sum_{k=0}^{K_{\text{end}}-1} \sum_{(o,d) \in \mathcal{O} \times \mathcal{D}} \sum_{l \in L_{o,d}} x_{l,o,d}(k) \kappa_l T_s^2$$

- Time spent in queues:

$$J_{\text{queue}} = \sum_{k=0}^{K_{\text{end}}-1} \sum_{(o,d) \in \mathcal{O} \times \mathcal{D}} \frac{1}{2} (q_{o,d}(k) + q_{o,d}(k+1)) T_s$$

MILP approach – Overall area control problem

Nonlinear optimization problem:

$$\min (\text{TTS links} + \text{TTS queues})$$

subject to

nonlinear model

operational constraints

MILP optimization problem:

$$\min (\text{TTS links} + \widehat{\text{TTS}} \text{ queues})$$

subject to

MILP model

operational constraints

MILP approach – Case study

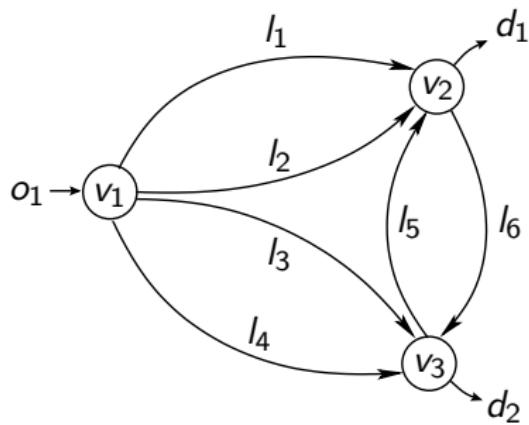


Figure: Set-up of case study network

MILP approach – Case study – Set-up

- Dynamic demand case with queues only at origins of network

Period (min)	0–10	10–30	30–40	40–60
D_{o_1, d_1} (veh/h)	5000	8000	2500	0
D_{o_1, d_2} (veh/h)	1000	2000	1000	0

- Scenario:
 - simulation period: 60 min, sampling time: 1 min
 - capacities: $C_1=1900$ veh/h, $C_2=2000$ veh/h, $C_3=1800$ veh/h, $C_4=1600$ veh/h, $C_5=1000$ veh/h, and $C_6=1000$ veh/h
 - delay factor: $\kappa_1=10$, $\kappa_2=9$, $\kappa_3=6$, $\kappa_4=7$, $\kappa_5=2$, and $\kappa_6=2$

MILP approach – Case study – Cases

Cases considered

- Case A: no control
- Case B: controlled using the MILP solution
- Case C: controlled using the exact solution

MILP approach – Case study – Results

Case	TTS_{tot} (veh.h)	improvement	CPU time (s)
No control	1434	0 %	–
MILP	1081	24.6 %	0.27
SQP (5 initial points)	1067	25.6 %	90.0
SQP (50 initial points)	1064	25.8 %	983
SQP (with MILP solution as initial point)	1064	25.8 %	1.29

MILP approach – Case study – Analysis

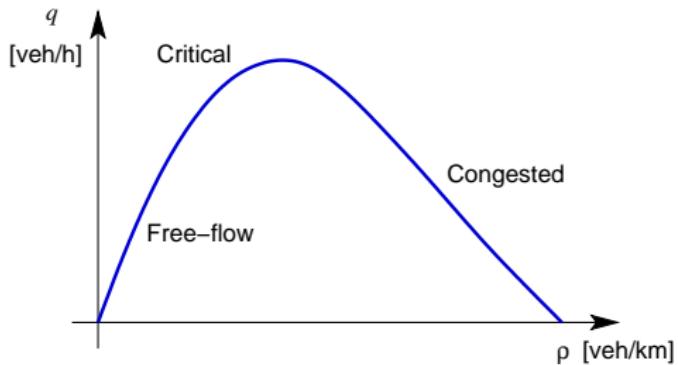
- **Uncontrolled** case: only direct/short routes are used. Length of origin queue increases with time
- **Controlled** cases: flows assigned to both short and long routes

Regional controllers

- Control collection of areas
- Determine optimal flows of platoons between areas
- Model: aggregate model – AHS variant of the Macroscopic Fundamental Diagram (MFD)
- Optimization: Nonlinear non-convex programming problem
Will be approximated using mixed-integer linear programming

Macroscopic Fundamental Diagram (MFD)

- Introduced by Geroliminis and Daganzo
- Describes relation between space-mean flow and density in neighborhood-sized sections of cities (up to 10 km²)
- Macroscopic fundamental diagram is independent of the demand
- Outflow of area is proportional to space-mean flow within area



Macroscopic Fundamental Diagram for AHS

- Adopt modified version of MFD for AHS
- Shape of MFD will be sharper and maximal flow will be much higher than in MFD for human drivers
- Represent AHS network by graph
 - links correspond to areas, with inflow $q_{\text{in},a}(k)$, outflow $q_{\text{out},a}(k)$, and density $\rho_a(k)$
 - nodes correspond to connections between areas, external origins (with inflow $q_{\text{orig},o}(k)$), or external exits (with outflow $q_{\text{exit},e}(k)$)

Model for regional controllers

- Network MFD for AHS results in static description of form

$$q_{\text{out},a}(k) = \mathcal{M}_a(\rho_a(k))$$

- Evolution of densities inside each area is described using simple conservation equation:

$$\rho_a(k+1) = \rho_a(k) + \frac{T}{L_a}(q_{\text{in},a}(k) - q_{\text{out},a}(k))$$

with T sample time step system and L_a measure for total length of highways and roads in area a

- For every node ν balance between inflows and outflows:

$$\sum_{a \in \mathcal{I}_\nu} q_{\text{out},a}(k) + \sum_{o \in \mathcal{I}_{\text{orig},\nu}} q_{\text{orig},o}(k) = \sum_{a \in \mathcal{O}_\nu} q_{\text{in},a}(k) + \sum_{e \in \mathcal{O}_{\text{exit},\nu}} q_{\text{exit},e}(k)$$

MPC for regional controllers

- Try to keep density in each region below critical density $\rho_{\text{crit},a}$:

$$J_{\text{pen}}(k) = \sum_{j=1}^{N_p} \sum_a \left[\max(0, \rho_a(k+j) - \rho_{\text{crit},a}) \right]^2$$

- Also minimize total time spent (TTS) by all vehicles in region:

$$J_{\text{TTS}}(k) = \sum_{j=1}^{N_p} \sum_a L_a \rho_a(k+j) T$$

- Total objective function:

$$J(k) = J_{\text{pen}}(k) + \gamma J_{\text{TTS}}(k)$$

- Constraints on maximal flows from one area to another,...
- Results in nonlinear, non-convex optimization problem

Mixed integer linear programming (MILP) – Two properties

- Given function f with lower bound m and upper bound M
- Property 1:** $[f(x) \leq 0] \Leftrightarrow [\delta = 1]$ is equivalent to

$$\begin{cases} f(x) \leq M(1 - \delta) \\ f(x) \geq \varepsilon + (m - \varepsilon)\delta \end{cases}$$

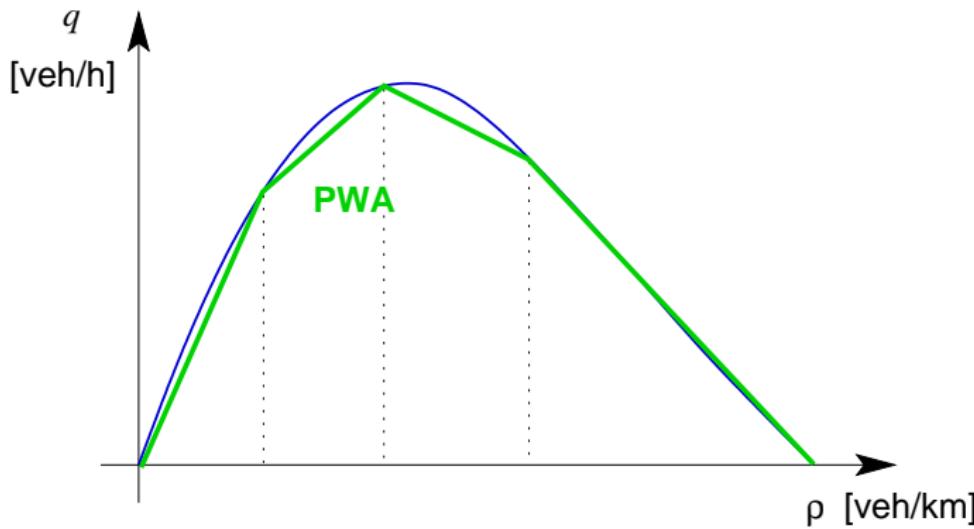
- Property 2:** $y = \delta f(x)$ with $\delta \in \{0, 1\}$ is equivalent to

$$\begin{cases} y \leq M\delta \\ y \geq m\delta \\ y \leq f(x) - m(1 - \delta) \\ y \geq f(x) - M(1 - \delta) \end{cases}$$

Transformation into MILP problem

- Approximate MFD by Piece-Wise Affine (PWA) function

$$q_{\text{out},a}(k) = \alpha_{a,i}\rho_a(k) + \beta_{a,i} \quad \text{if } \rho_a(k) \in [\rho_{a,i}, \rho_{a,i+1}]$$



Transformation into MILP problem

- Approximate MFD by Piece-Wise Affine (PWA) function

$$q_{\text{out},a}(k) = \alpha_{a,i}\rho_a(k) + \beta_{a,i} \quad \text{if } \rho_a(k) \in [\rho_{a,i}, \rho_{a,i+1}]$$

- Introduce binary variables $\delta_{a,i}(k)$ such that

$$\delta_{a,i}(k) = 1 \quad \text{if and only if } \rho_{a,i} \leq \rho_a(k) \leq \rho_{a,i+1}$$

Can be transformed into MILP equations using Property 1

- Now we have

$$q_{\text{out},a}(k) = \sum_{i=1}^{N_a} (\alpha_{a,i}\rho_a(k) + \beta_{a,i})\delta_{a,i}(k)$$

- Introduce real-valued auxiliary variables $y_{a,i}(k) = \rho_a(k)\delta_{a,i}(k)$

Can be transformed into MILP equations using Property 2

Transformation into MILP problem

- Results in

$$q_{\text{out},a}(k) = \sum_{i=1}^{N_a} \alpha_{a,i} y_{a,i}(k) + \beta_{a,i} \delta_{a,i}(k)$$

- If we combine all equations and inequalities, we obtain a system of mixed-integer linear inequalities

Transformation into MILP problem

- Recall

$$J_{\text{pen}}(k) = \sum_j \sum_a [\max(0, \rho_a(k+j) - \rho_{\text{crit},a})]^2 \rightarrow \text{not linear}$$

$$J_{\text{TS}}(k) = \sum_j \sum_a L_a \rho_a(k+j) T \rightarrow \text{linear!}$$

- Removing square in $J_{\text{pen}}(k)$ results in PWA objective function
Can be transformed in MILP equations using Properties 1 & 2
- Hence, we get MILP problem
- Solution of MILP problem can be directly applied or it can be used as good initial starting point for original nonlinear, non-convex MPC optimization problem

Related work: Traffic management using MPC

- More viable option on short term:
roadside intelligence
→ traffic control center +
current infrastructure
- Use conventional control measures:
variable speed limits, ramp metering,
traffic signals, lane closures, shoulder lane
openings, tidal flow, ...
- Also include “soft” control measures:
dynamic route information, travel time
information, ...

Ongoing research

- Address complexity issues for large-scale systems
 - simplified models for urban traffic networks
 - parametrized MPC
- Alternative objective functions + related models
 - emissions: CO, NO_x, CO₂, HC, ...
 - fuel consumption

Cooperative Vehicle Infrastructure Systems

- Intermediate step between current system and AHS

Other applications

- Electricity networks
- Water networks
- Railway networks
- Logistic systems

Conclusions

- Hierarchical control framework for automated highway systems (AHS)
- Focus on roadside, area, and regional controllers
- In general: nonlinear, non-convex mixed-integer optimization problems
- Reduce complexity of problem by selecting appropriate models and making approximations
- Results by bi-level, mixed-integer linear programming, or nonlinear, non-convex real-valued optimization problems

Future work

- extensive integrated case study & assessment
- further development of HD-MPC approaches
- further improvements in efficiency and performance

Main issues and topics in HD-MPC for transportation and infrastructure networks

- How to obtain tractable prediction models?
- What is the best division into subnetworks?
- Selection of static/dynamic region boundaries?
- How to determine subgoals so as to optimize overall goal?
- How can existing approaches be extended to hybrid systems?
- How can the computation/iteration time be reduced further?
(algorithms, properties, approximations, reductions, . . .)

