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HD-MPC for large-scale systems

Challenges in control of large-scale networks:
Large-scale networks

Distributed vs centralized control

Optimality <> computational efficiency/tractability
Global < local

Scalability

Communication requirements (bandwidth)

e © 6 ¢ ¢ ¢ ¢

Robustness against failures

— multi-level multi-agent approach
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HD-MPC for large-scale systems

Multi-level multi-agent control

@ Multi-level control with intelligent control agents &
coordination

@ Time-based and space-based separation into layers
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Multi-level multi-agent control

@ Multi-level control with intelligent control agents &
coordination

@ Time-based and space-based separation into layers

slow dynamics
large region

fast dynamics
control control control ce o .
agent agent agent small region
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HD-MPC for large-scale systems

Multi-level control framework

@ Lowest level:

@ local control agents

o “fast” control

@ small region

s operational control
@ Higher levels:

8 supervisors

@ “slower” control

o larger regions

@ operational, tactical, strategic control
@ Multi-level, multi-objective control structure

@ Coordination at and across all levels

@ Combine with model predictive control (MPC) 2 i
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HD-MPC for large-scale systems

Major problem for MPC in practice: Required computation
time for large-scale systems

@ Use distributed and/or hierarchical control approach

@ Choice of the prediction model: accuracy versus
computational complexity

@ Right optimization approach

o parallel and/or distributed optimization
@ approximate original MPC optimization problem by another
optimization problem that can be solved efficiently

@ Include application-specific knowledge

P
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Traffic management and automated highway systems

Need for traffic control
Traffic jams & congestion
— cause time losses, extra costs, more incidents
have negative impact on economy, environment, society
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Traffic management and automated highway systems

Several ways to reduce traffic jams and to improve traffic
performance:

@ New infrastructure, missing links
@ Pricing
@ Modal shift

@ Better use of available capacity through
intelligent traffic control
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Traffic management and automated highway systems

Intelligent traffic control
Next generation traffic control and management system

@ Use in-car telematics (navigation, telecommunication,
information, ...) systems

@ Vehicle-vehicle 4 vehicle-roadside communication
@ Use intelligent vehicles (1Vs)
@ control system senses environment using sensors
o enhances either performance of driver or vehicle itself
@ assisting (advisory/warning)
& taking partial or complete control (full automation)
@ Two variants of traffic management using IVs:
@ cooperative vehicle-infrastructure systems (CVIS):
drivers are still in charge of their vehicles
s Automated Highway Systems (AHS):

autonomous vehicles organized in platoons : i
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Traffic management and automated highway systems

Automated highway systems (AHS)

@ Platoons of intelligent,
autonomous vehicles

@ Small inter-vehicle distance inside
distances + high speeds
— higher throughput

@ Larger inter-platoon distance for
safety

@ Problems:

@ transition
@ psychological & legal aspects
— long-term, trucks
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Traffic management and automated highway systems

Automated highway systems (AHS)

@ Integrate various in-vehicle and roadside-based traffic control
measures that support platoons of fully autonomous IVs

platoon cooperative adaptive cruise control

intelligent speed adaptation dynamic route guidance
@ Goal: improved traffic performance (safety, throughput,
environment, ...) + constraints (robustness, reliability, ... )
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Traffic management and automated highway systems 12/52

Additional advantage of platoons: No capacity drop

o Capacity drop for human drivers: If traffic flow breaks down,
then afterwards outflow from congested area is less than
previous higher flow
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@ Reason: Human drivers tend to accelerate more slowly when

they are coming out of congestion
@ This effect plays less or even not with autonomous vehiclesx
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MPC for traffic control 13,

Traffic flow models

Two main classes:
@ Microscopic models — individual vehicles

@ Macroscopic models — aggregated variables
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MPC for traffic control 14/52

Microscopic traffic flow models

@ Consider individual vehicles
o Car following + lane changing + overtaking models
o Different driver classes (with different parameters settings)

@ Simulation rather time-consuming for large networks
— less suited as prediction model for MPC
— better suited as simulation/validation model

%% 29 2%
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MPC for traffic control

Macroscopic traffic flow models

@ Work with aggregated variables (average speed, density, flow)
@ Examples:

@ fluid-like models: Lighthill-Whitham-Richards (LWR), Payne,
METANET, ...
@ gas-kinetic models: Helbing model, ...

@ Trade-off between computational speed versus accuracy
— well suited as prediction model for MPC

— less suited as simulation/validation model

@ In this presentation we use macroscopic models for automated

highway systems as prediction model for MPC
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A multi-level multi-scale HD-MPC approach for AHS —
hierarchical multi-layer control approach (~ California PATH)

| Supraregional controller |

| Regional controller | eoeo | Regional controller |

[
Area controller co e | Area controller |

| Roadside controller | cee | Roadside controller |
\ /
| Platoon controller | oo | Platoon controller |

\ \

| Vehicle controller | L °°| Vehicle controller | i))
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Multi-level multi-scale HD-MPC for AHS

Controller | Unit Control Time scale

Vehicle vehicle throttle, brake, <s
steering

Platoon vehicles distances & speeds, | < s
trajectories

Roadside | platoons lanes & speeds, s—min
split & merge

Area flows of platoons | routing > min

Regional | flows routing > 15-30 min
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Multi-level multi-scale HD-MPC for AHS

Control strategies

@ Vehicle controllers: (adaptive) PID + logic (for safety)
@ Platoon controllers: rule-based control, hybrid control

@ Roadside, area, regional controllers: MPC

J(k)

s.t. model of system

min
u(k),...,u(k+Nc—1)

operational constraints

—  medium-sized problems due to temporal & spatial
division
— still tractable

@ Coordination (top-down) via performance criterion J or

constraints x
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Multi-level multi-scale HD-MPC for AHS— Roadside control 19/52

Roadside controllers

Control highway or stretch of highway

@ Measurements: position, speed, lanes of platoon leaders

@ Control inputs: platoon speeds, lane allocations, on-ramp
release times

@ Objectives:

o track speed and splitting rate profiles imposed by area
controllers
& minimize total time spent (TTS) in network and queues, ...

Constraints: min. headway, min. and max. speeds
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Multi-level multi-scale HD-MPC for AHS— Roadside control 20/52

MPC for roadside controllers

@ Model: “big-car” model
platoon = vehicle with speed-dependent length

np—l np
Lplatoon,p(k) = (nP - 1)50 + Z Tgan"V”p(k) + Z Li
i=1 i=1

with Sp minimum safe distance at zero speed and Tg,p i the
desired time gap

@ Nonlinear optimization problem:

min (TTS links + TTS queues)
subject to nonlinear model
operational constraints

@ Optimization: mixed-integer nonlinear programming

Simplify by bi-level approach in which first lane allocation is
determined (via heuristics, optimized, slower rate, ...)
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Multi-level multi-scale HD-MPC for AHS— Roadside control

Case study — Problem statement

Two-lane highway with an incident causing traffic

0 _km 35 _km 4 km 5 _km 6 I_(m
: lanel :
lane 2 | |

incident af tgat

Scenario:
Demand: 2500 veh/h (mainstream) and 350 veh/h (on-ramp)

Incident at 4-5 km, start of simulation (10 minutes)
Queues at start: empty

°
°
@ Simulation period: 10 min, controller sampling time: 1 min
°

Simulation sampling time: 1's i
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Multi-level multi-scale HD-MPC for AHS— Roadside control

Case study — Cases
Cases considered:
@ Uncontrolled human drivers
@ Controlled human drivers (current situation)

@ Platoon approach — our approach
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Multi-level multi-scale HD-MPC for AHS— Roadside control

Case study — Results

Case TTS Relative im-

(veh-h)  provement (%)
Uncontrolled 71.80 0%
Controlled (human drivers)  63.38 10.96 %
Controlled (platoons) 57.75 18.86 %

Reduced TTS — decreased travel times, increased trips, ...

P
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Multi-level multi-scale HD-MPC for AHS— Area control

Area controllers
@ Route guidance + provide set-points for roadside controllers
@ Traffic network is represented by graph with nodes and links

@ Due to computational complexity, optimal route choice
control done via flows on links

@ Optimal route guidance: nonlinear integer optimization with
high computational requirements — intractable

P
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Multi-level multi-scale HD-MPC for AHS— Area control

Area controllers (contd.)
@ Fast approaches based on
o Mixed-Integer Linear Programming (MILP)

@ transform nonlinear problem into system of linear equations
using binary variables

@ can be solved efficiently using branch-and-bound; several
efficient commercial and freeware solvers available

& macroscopic METANET-like traffic flow model
o for humans, splitting rates are determined by traffic
assignment
@ in AHS, splitting rates considered as controllable input
@ will result in non-convex real-valued optimization
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — General set-up
@ Only consider flows and queue lengths
@ Each link has maximal allowed capacity constraint

@ Piecewise constant time-varying demand - [kTs, (k + 1) T) for
k=0,...,K—1with K (simulation horizon)

Do,d
Do.(1) Dod(K —2)
Do,d(o)
fDo,d(K — 1)
0 T. 2T, .. (K—2)To(K—-1)T, KT, t

@ Main goal: assign optimal flows x; , 4(k) i
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Multi-level multi-scale HD-MPC for AHS— Area control
MILP approach — Model

@ Inflow at origin:

k
Z X1.0,d(k) < Do q(k) + M for each d € D

Ts
IeLotNL, 4
@ Outflow from origin to destination:
out
Fog(k) =" > xiod(k)
IELg”tﬂLo’d

@ Assume constant delay x between beginning and end of link
@ Queue behavior at origin: Total demand — outflow

® More specifically, Do 4(k) — F3'4(k) in time interval
[kTs, (k +1)Ts)

Go.a(k + 1) = max (0, go,4(k) + (Do,a(k) — F;:%J(k))Ts)x
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Equivalences
P1: [f(x) < 0] <= [§ = 1] is true if and only if

f(x) < M(1-9)
{ f(x) = e+ (m—e€)o

y < Mé
y = md
y < f(x) —m(1—9)
y = f(x) — M(1 —9)

P2: y = 0f(x) is equivalent to

@ f function with upper and lower bounds M and m
@ ¢ is a binary variable

@ y is a real-valued scalar variable

@ ¢ is a small tolerance (machine precision)
— transform max equations into MILP equations %
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Transforming the queue model
Go,d(k + 1) = max (0, go,q(k) + (Do,d(k) — F34(k))Ts)
Define
[do,d(k) =1] <= [qo,d(k) + (Dod(k) — F5ig(k))Ts > 0]
Can be transformed into MILP equations using equivalence P1

Go.d(k +1) = do,a(Kk)( do,d(k) + (Do,a(k) = Fgg (k) Ts)

f (linear)

=z, 4(k)

Product between 6, 4(k) and f can be transformed into system of

MILP equations using equivalence P2
Queue model — system of MILP equations M
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Objective function for queues
Original objective function: time spent in queues
(linear/quadratic):

queue queue

length ,\ length

time time
Approximated objective function (linear):

queue queue

length length

1
time time ‘X
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Objective Functions

@ Time spent in links:

end 1

Jlinks = Z Z Z Xl,o,d(k)/i/—,—s2

k=0 (0,d)EOXD IELy 4

@ Time spent in queues:

Kend—1

queue - Z Z %(qo,d(k) + qo,d(k + 1))Ts

=0 (o0,d)€OxD
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Overall area control problem
Nonlinear optimization problem:
min (TTS links + TTS queues)
subject to
nonlinear model
operational constraints

MILP optimization problem:

min (TTS links + TTS queues)
subject to

MILP model

operational constraints
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study

o1~

Figure: Set-up of case study network

d>
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Set-up

@ Dynamic demand case with queues only at origins of network

Period (min) | 0-10 | 10-30 | 30-40 | 40-60
Do, .4, (veh/h) | 5000 | 8000 | 2500 0
Do, .4, (veh/h) | 1000 | 2000 | 1000 0

@ Scenario:

@ simulation period: 60 min, sampling time: 1 min
@ capacities: C;=1900 veh /h, (;=2000veh/h, (3=1800veh/h,

C4=1600veh/h, CG;=1000veh/h, and C¢=1000veh/h

o delay factor: k1=10, k=9, k3=06, K4=7, K5=2, and kg=2
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Cases
Cases considered
o Case A: no control
@ Case B: controlled using the MILP solution

@ Case C: controlled using the exact solution

Hierarchical MPC for transportation networks — Bart De Schutter



Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Results

Case TTSiet | improvement | CPU time

(veh.h) (s)
No control 1434 0% -
MILP 1081 24.6 % 0.27
SQP (5 initial points) 1067 25.6 % 90.0
SQP (50 initial points) 1064 25.8% 983
SQP (with MILP solution 1064 25.8% 1.29

as initial point)
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Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Analysis

@ Uncontrolled case: only direct/short routes are used. Length
of origin queue increases with time

@ Controlled cases: flows assigned to both short and long routes

P
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Multi-level multi-scale HD-MPC for AHS— Regional control 38/52

Regional controllers
@ Control collection of areas
@ Determine optimal flows of platoons between areas

@ Model: aggregate model — AHS variant of the Macroscopic
Fundamental Diagram (MFD)

@ Optimization: Nonlinear non-convex programming problem
Will be approximated using mixed-integer linear programming

P
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Multi-level multi-scale HD-MPC for AHS— Regional control

Macroscopic Fundamental Diagram (MFD)

@ Introduced by Geroliminis and

Daganzo .

@ Describes relation between [vehih]
space-mean flow and density in
neighborhood-sized sections of
cities (up to 10 km?)

Critical

Free-flow
@ Macroscopic fundamental

Congested

-

diagram is independent of the
demand

@ Outflow of area is proportional
to space-mean flow within area

>

p [veh/km]

P
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Multi-level multi-scale HD-MPC for AHS— Regional control

Macroscopic Fundamental Diagram for AHS

@ Adopt modified version of MFD for AHS

@ Shape of MFD will be sharper and maximal flow will be much
higher than in MFD for human drivers
@ Represent AHS network by graph
o links correspond to areas, with inflow g, 2(k), outflow
Gout,a(k), and density pa(k)
@ nodes correspond to connections between areas,
external origins (with inflow Gorig,o(k)), or
external exits (with outflow Gexit e(k))
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Multi-level multi-scale HD-MPC for AHS— Regional control

Model for regional controllers
@ Network MFD for AHS results in static description of form

qout,a(k) = Ma(pa(k))

@ Evolution of densities inside each area is described using
simple conservation equation:

pa(k +1) = pa(k) + Z;(q;n,a(k) — Gout,a(k))

with T sample time step system and L, measure for total
length of highways and roads in area a
@ For every node v balance between inflows and outflows:

Z qout,a(k) + Z qorig,o(k) =

QEIU oel'orig,l,

Zqin,a(k)+ Z qexit,e(k)
ac0, eeoexit,u
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Multi-level multi-scale HD-MPC for AHS— Regional control

MPC for regional controllers

@ Try to keep density in each region below critical density pit, a:

pen k) ZZ max 0 Pa k+J) Pcrit, a)]

@ Also minimize total time spent (TTS) by all vehicles in region:

Jrrs(k) =)0 Lapa(k+ )T

j=1 a

@ Total objective function:

J(k) = Jpen(k) + ’YJTTS(k)

@ Results in nonlinear, non-convex optimization problem

@ Constraints on maximal flows from one area to another,. .. i

Hierarchical MPC for transportation networks — Bart De Schutter



Multi-level multi-scale HD-MPC for AHS— Regional control

Mixed integer linear programming (MILP) — Two properties
@ Given function f with lower bound m and upper bound M

@ Property 1:
[f(x) < 0] & [0 = 1] is equivalent to

f(x) < M(1-9)
f(x) > e+ (m—e)d

@ Property 2:
y = 0f(x) with § € {0,1} is equivalent to

y < Mo
y > mo
y < f(x) = m(1-9)

y z f(x) = M(1-9) %
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Multi-level multi-scale HD-MPC for AHS— Regional control

Transformation into MILP problem
@ Approximate MFD by Piece-Wise Affine (PWA) function

qout,a(k) = aa,ipa(k) + ﬂa,i if pa(k) € [pa,ia Pa,i+1]

q
[veh/h]

PWA

>
p [veh/km]

P
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Multi-level multi-scale HD-MPC for AHS— Regional control

Transformation into MILP problem
@ Approximate MFD by Piece-Wise Affine (PWA) function

qout,a(k) = aa,ipa(k) + ﬁa,i if pa(k) € [pa,i7pa,i+1]
@ Introduce binary variables 4, ;(k) such that
dai(k) =1 if and only if ps; < pa(k) < pa,it1

Can be transformed into MILP equations using Property 1

@ Now we have
N,

qout,a(k) = Z (aa,ipa(k) + Ba,i)da,i(k)

i=1

Can be transformed into MILP equations using Property 2

@ Introduce real-valued auxiliary variables y, j(k) = pa(k)da,,i(k) i
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Multi-level multi-scale HD-MPC for AHS— Regional control 45/52

Transformation into MILP problem

@ Results in

N,
qout,a(k) = Z aa,iya,i(k) + ﬁa,iéa,i(k)

i=1

@ If we combine all equations and inequalities, we obtain a
system of mixed-integer linear inequalities

P
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Multi-level multi-scale HD-MPC for AHS— Regional control

Hierarchical MPC for transportation networks — Bart De Schutter

Transformation into MILP problem

o Recall
Jpen( ZZ max(0, pa(k +Jj) = perit a)] — not linear
Jrrs(k) = ZZ Lapa(k +J)T — linear!
J a

@ Removing square in Jyen(k) results in PWA objective function
Can be transformed in MILP equations using Properties 1 & 2

@ Hence, we get MILP problem

@ Solution of MILP problem can be directly applied or it can be

used as good initial starting point for original nonlinear,
non-convex MPC optimization problem




Related work ar,

Related work: Traffic management using MPC

@ More viable option on short term:
roadside intelligence
— traffic control center +
current infrastructure

@ Use conventional control measures:
variable speed limits, ramp metering,
traffic signals, lane closures, shoulder lane
openings, tidal flow, ...

@ Also include “soft” control measures:
dynamic route information, travel time
information, . ..
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Related work: Traffic management using MPC

Ongoing research
o Address complexity issues for large-scale systems
o simplified models for urban traffic networks
& parametrized MPC
@ Alternative objective functions + related models

o emissions: CO, NO,, CO,, HC, ...
o fuel consumption
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Related work: Traffic management using MPC

Cooperative Vehicle Infrastructure Systems

@ Intermediate step between current system and AHS

Hierarchical MPC for transportation network: Bart De Schutter



Related work: Traffic management using MPC

Other applications

o Electricity
networks

@ Water networks

@ Railway networks

@ Logistic systems
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Conclusions and future work 51/52

Conclusions

@ Hierarchical control framework for automated highway
systems (AHS)

@ Focus on roadside, area, and regional controllers

@ In general: nonlinear, non-convex mixed-integer optimization
problems

@ Reduce complexity of problem by selecting appropriate models
and making approximations

@ Results by bi-level, mixed-integer linear programming, or
nonlinear, non-convex real-valued optimization problems

Future work

@ extensive integrated case study & assessment

o further development of HD-MPC approaches
o further improvements in efficiency and performance x
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Conclusions and future work

Main issues and topics in HD-MPC for transportation and
infrastructure networks

(]

How to obtain tractable prediction models?

@ What is the best division into subnetworks?

@ Selection of static/dynamic region boundaries?

@ How to determine subgoals so as to optimize overall goal?

@ How can existing approaches be extended to hybrid systems?
@ How can the computation/iteration time be reduced further?

(algorithms, properties, approximations, reductions, .. .)
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